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Abstract. Let G be a group and AutΦ(G) denote the group of all automorphisms of G centralizing

G/Φ(G) elementwise. In this paper, we characterize the finite p-groups G with cyclic Frattini subgroup

for which |AutΦ(G) : Inn(G)| = p.

1. Introduction

Let G be a finite group and N a characteristic subgroup of G. We let AutN (G) denote the centralizer

in Aut(G) of G/N . Clearly AutN (G) is a normal subgroup of Aut(G), the automorphism group of

G, and α ∈ AutN (G) if and only if x−1xα ∈ N for all x ∈ G. Now let M be a normal subgroup

of G. We let AutM (G) denote the group of all automorphisms of G centralizing M . Moreover,

AutNM (G) = AutN (G)
∩

AutM (G). It is well-known that if G is a finite p-group, then so is the group

AutΦ(G), where Φ denotes the Frattini subgroup of G. Clearly AutΦ(G) is a normal subgroup of

Aut(G) containing Inn(G), the group of inner automorphisms of G. Müller in [10] proved, using

techniques from cohomology, that if G is a finite non-abelian p-group, then AutΦZ(G) = Inn(G) if and

only if Φ ≤ Z and Φ is cyclic, where Z = Z(G). This turns out that AutΦ(G)/Inn(G) is non-trivial
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if and only if G is neither elementary abelian nor extraspecial. Curran and McCaughan in [4] proved

that if G is a finite non-abelian p-group, with Inn(G) contained in AutZ(G), then

(i) AutZ(G) = Inn(G) if and only if G′ = Z(G) and Z(G) is cyclic.

(ii) |AutZ(G) : Inn(G)| = p if and only if Z(G) is cyclic and |Z(G) : G′| = p.

In this paper we characterize the finite p-groupsG with cyclic Frattini subgroup for which |AutΦ(G) :

Inn(G)| = p. In §2 we give some basic results that are needed for the main results of the paper. Finally

in §3 we prove the main results of the paper.

Throughout this paper all groups are assumed to be finite groups. Our notation is standard, and

can be found in [7], for example. A group G of order pm is said to be of maximal class if m > 2 and the

nilpotency class of G is m−1. Recall that a group G is called a central product of its subgroups A and

B if A and B commute elementwise and together generate G. In this situation, we write G = A∗B. A

non-abelian group that has no non-trivial abelian direct factor is said to be purely non-abelian. For a

finite group G, exp(G), Ωi(G), o(x) and |G| respectively denote the exponent of G, the subgroup of G

generated by its elements of order dividing pi, the order of x ∈ G and the size of G. We use Hom(G,A)

to denote the group of homomorphisms of G into an abelian group A and Zn for the cyclic group of

order n. If α is an automorphism of G and x is an element of G, we write xα for the image of x under

α. For s ≥ 1, we use the notation G∗s for the iterated central product defined by G∗s = G ∗ G∗(s−1)

with G∗1 = G, where G is a finite p-group. We also make the convention G∗0 = 1. We denote by

D2n , Q2n , S2n and Xp3 for the dihedral, generalized quaternion, semidihedral group of order 2n and

non-abelian p-group of order p3 and exponent p, where p is an odd prime; the group Mpn is defined

by

⟨a, b|apn−1
= bp = 1, ab = a1+pn−2⟩,

when p = 2, assume that n > 3, while if p is odd, assume n > 2. Throughout the paper, we write Z

and Φ for Z(G) and Φ(G), respectively.

2. Some basic results

In this section we give some basic results which will be used in the rest of the paper.

In [1], Adney and Yen proved the following result.

Theorem 2.1. [1, Theorem 1] For a finite purely non-abelian group G, there is a 1-1 correspondence

between Hom(G,Z(G)) and AutZ(G), whence

|Hom(G/G′, Z(G))| = |AutZ(G)|.

We now list two families of finite 2-groups of order 2n+3 introduced by Berger, Kovács and Newman

in [2] which will be used in the rest of the paper.
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D+
2n+3 = ⟨a, b, c|a2n+1

= b2 = c2 = 1, ab = a−1+2n , ac = a1+2n , [b, c] = 1⟩,

Q+
2n+3 = ⟨a, b, c|a2n+1

= b2 = 1, ab = a−1+2n , ac = a1+2n , a2
n
= c2, [b, c] = 1⟩,

both with n > 1.

The following structure theorem plays an important role in our proofs.

Theorem 2.2. [2, Theorem 2] If G is a finite p-group with Z(Φ(G)) cyclic, then

G = E × (G0 ∗G1 ∗ · · · ∗Gs),

where E is an elementary abelian, G1, . . . , Gs are non-abelian of order p3, of exponent p for p odd and

dihedral for p = 2, while G0 > 1 if E > 1, |G0| > 2 if s > 0, and G0 has one of the following types:

cyclic, non-abelian with a cyclic maximal subgroup, D2n+2 ∗ Z4, S2n+2 ∗ Z4, D
+
2n+3 , Q

+
2n+3 , D

+
2n+3 ∗ Z4,

all with n > 1. Conversely, every such group has cyclic Frattini subgroup.

In [5], Fouladi, Jamali and Orfi proved the following result giving some information on a finite

non-abelian p-group with cyclic Frattini subgroup. We now give an alternative proof for their result

[5, Theorem 2.4].

Theorem 2.3. Let G be a finite non-abelian p-group with cyclic Frattini subgroup Φ(G).

(i) If p > 2, or p = 2 and cl(G) = 2, then Φ(G) ≤ Z(G).

(ii) If cl(G) > 2, then G′ = Φ(G).

Proof. We will make use of the notation of Theorem 2.2 It is straightforward to observe that Φ(G) =

Φ(G0). IfG0 is cyclic, then (i) is obvious. Next, by [7, Theorems 5.4.3 and 5.4.4], G0 is one of the groups

Mpn (n > 2, p > 2),D8, Q8 orM2n (n > 3). So |G′| = p. By [9, Lemma 0.4], exp(G/Z(G)) = exp(G′) =

p, which implies that Φ(G) ≤ Z(G). To prove (ii), we observe that cl(G0) > 2 and G0 has one of the

following types: D2n , Q2n or S2n all with n ≥ 4; and D2n+2 ∗ Z4, S2n+2 ∗ Z4, D
+
2n+3 , Q

+
2n+3 , D

+
2n+3 ∗ Z4,

all with n > 1. It is easy to see that in each cases Φ(G) = Φ(G0) = G′
0 = G′, as required. □

Lemma 2.4. Let G be a finite group with Φ(G) ≤ Z(G). Then there is a bijection from Hom(G/G′,Φ(G))

onto AutΦ(G) associating to every homomorphism f : G → Φ(G) the automorphism x 7→ xf(x) of G.

In particular, if G is a p-group and exp(Φ(G)) = p, then AutΦ(G) ∼= Hom(G/G′,Φ(G)).

Proof. For any α ∈ AutΦ(G), define fα : G → Φ(G) by fα(x) = x−1xα. Clearly fα is a homomorphism,

and α 7→ fα is an injective map from AutΦ(G) to Hom(G,Φ(G)). Conversely, if f ∈ Hom(G,Φ(G)),

then define α = αf : G → G by xα = xf(x). Since x−1xα ∈ Φ(G), for all x ∈ G, we may write G as

the product of the image of α and the Frattini subgroup of G and so the image of α must be G itself.

Thus α is an automorphism of G. We have α = αf ∈ AutΦ(G) and fαf
= f . Finally suppose that
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exp(Φ(G)) = p and α ∈ AutΦ(G). We observe that α fixes any element of Φ(G). Consequently the

map α 7→ fα is an isomorphism, which completes the proof. □

Lemma 2.5. Let G = E ∗F be a central product of subgroups E and F . If α ∈ Aut
Φ(E)
Z(E)(E), then the

map α̂ : xy 7→ xαy, where x ∈ E and y ∈ F , defines an automorphism of G lying in Aut
Φ(G)
Z(G)(G).

Proof. It is straightforward. □

3. p-groups with a cyclic Frattini subgroup for which |AutΦ(G) : Inn(G)| = p

It is well-known [8, Satz III. 3.17] that for a p-group G of order pn, the order of AutΦ(G) divides

pr(n−r), where |G/Φ(G)| = pr. In this section we study the finite p-groups G with cyclic Frattini

subgroup for which |AutΦ(G) : Inn(G)| = p. Let G be an abelian p-group. It is easy to see that

|AutΦ(G)| = p if and only if G ∼= Zp2 . Thus we assume that G is a non-abelian p-group.

Lemma 3.1. Let G be a non-abelian p-group with cyclic Frattini subgroup. Assume that either p > 2,

or p = 2 and cl(G) = 2. Then |AutΦ(G)| = |G|/p and |AutΦ(G) : Inn(G)| = |Z(G)|/p.

Proof. According to Theorem 2.3, Φ(G) ≤ Z(G). So G is of class 2 and |G′| = p. Assume that

|Φ(G) : G′| = pe. Then Φ(G) ∼= Zpe+1 . Since exp(G/G′) ≤ pe+1, |AutΦ(G)| = |G|/p, by Lemma 2.4

and so |AutΦ(G) : Inn(G)| = |Z(G)|/p. □

In the following theorem we will characterize the finite non-abelian p-groups G with cyclic Frattini

subgroup when either p > 2, or p = 2 and cl(G) = 2.

Theorem 3.2. Let G be a finite non-abelian p-group with cyclic Frattini subgroup. Assume that either

p > 2, or p = 2 and cl(G) = 2. Then |AutΦ(G) : Inn(G)| = p if and only if G has one of the following

types: Mp4, Z4 ∗D∗s
8 , M16 ∗D∗s

8 , Zp2 ∗X∗s
p3 , Mp4 ∗X∗s

p3 , Zp×Mp3, Zp× (Mp3 ∗X∗s
p3 ), Z2×D8, Z2×Q8,

Z2 ×D
∗(s+1)
8 or Z2 × (Q8 ∗D∗s

8 ), for some s ≥ 1.

Proof. By Lemma 3.1, |Z(G)| = p2. We use Theorem 2.2, and consider two cases:

CASE I. E = 1.

If s = 0, thenG = G0 whereG0 is a non-abelian with a cyclic maximal subgroup. Thus by [7, Theorems

5.4.3 and 5.4.4], G ∼= Mp4 . Let s > 0 and G = G0 ∗K, where |G0| > 2 and K = G1 ∗ · · · ∗Gs. Since

G0
∩

K ̸= 1 then Z(K) ≤ Z(G0). Thus Z(G) = Z(G0), because |Z(K)| = p, and so G be one of the

groups: Z4 ∗D∗s
8 , M16 ∗D∗s

8 , Zp2 ∗X∗s
p3 or Mp4 ∗X∗s

p3 .

CASE II. E ̸= 1.

In this case G0 > 1. If s = 0 then G = E × G0, where Z(G0) ∼= Zp and so G is one of the groups:

Zp ×Mp3 , Z2 ×D8 or Z2 × Q8. Next we assume that s > 0 and G = E × (G0 ∗K), where |G0| > 2

and K = G1 ∗ · · · ∗ Gs. We have 1 ̸= G0
∩

K = Z(K) ≤ Z(G0) and Z(G) = E × Z(G0). It follows
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that Z(G0) ∼= Zp and so G is isomorphic either to: Zp × (Mp3 ∗X∗s
p3 ), Z2 ×D

∗(s+1)
8 or Z2 × (Q8 ∗D∗s

8 ).

The converse follows at once from Lemma 3.1. □

Lemma 3.3. Let G be one of the groups D2n, Q2n, both with n ≥ 3 or S2n, where n ≥ 4. Then

|AutΦ(G) : Inn(G)| = 2n−3. In particular, if n ≥ 5 then |AutΦZ(G) : Inn(G)| > 2.

Proof. We set G = ⟨a, b⟩. Since |G| = 2n, (n ≥ 3), we can assume that o(a) = 2n−1, then Z(G) =

⟨a2n−2⟩ and G is of maximal class. Therefore G′ = Φ(G) and |G′| = 2n−2. Now by [3, Theorem 3.2],

for any u, v ∈ G′ the map sending a 7→ au and b 7→ bv is an automorphism lying in AutG
′
(G). Hence

|AutΦ(G)| = 22n−4 and so |AutΦ(G) : Inn(G)| = 2n−3. Now, if G is either D2n or Q2n , then there are

automorphisms α and β defined by aα = a, bα = a2b and aβ = a−1, bβ = b. Also if G = S2n , then

there are automorphisms α and β defined by aα = a, bα = a−2+2n−2
b and aβ = a−1+2n−2

, bβ = b. In

both cases, it is then easy to check that Inn(G) = ⟨α, β⟩ ∼= D2n−1 . Next we defined the non-inner

automorphism γ by aγ = a5, bγ = b. This shows that (a2
n−2

)γ = a2
n−2

and so γ ∈ AutΦZ(G). Also

o(γ) = 2n−3, where n ≥ 5. We claim that γ2 is not in Inn(G). To see this, suppose to the contrary

γ2 = αiβj , where 0 ≤ i < 2n−2 and 0 ≤ j ≤ 1. Now b = bγ
2
= a(−1)j2ib or a(−1)ji(2n−2−2)b where

G = D2n , Q2n or S2n respectively. So 2n−1 | 2i or 2n−1 | i(2n−2 − 2). Then i = 0 and γ2 = β, a

contradiction. This implies that |AutΦZ(G) : Inn(G)| > 2. □

Lemma 3.4. Let G be one of the groups D+
2n+3, Q

+
2n+3, D2n+2 ∗ Z4, S2n+2 ∗ Z4 or D+

2n+3 ∗ Z4, all with

n ≥ 3. Then |AutΦZ(G) : Inn(G)| > 2.

Proof. By using GAP [6], we have |AutΦZ(G) : Inn(G)| > 2, where G stands for either D+
64, Q

+
64 or

D+
64∗Z4. First assume that G is either D+

2n+3 or Q+
2n+3 , where n ≥ 4. Then G = ⟨a, b, c⟩, Z(G) = ⟨a2n⟩

and there are automorphisms α, β and γ defined by aα = a, bα = a2
n−2b, cα = a2

n
c, aβ = a2

n−1, bβ = b,

cβ = c and aγ = a2
n+1, bγ = b, cγ = c. It is then easy to check that Inn(G) = ⟨α, β⟩×⟨γ⟩ ∼= D2n+1×Z2.

By defining the automorphism aδ = a5, bδ = b and cδ = c, it follows that δ ∈ AutΦZ(G). We

show that δ2 ̸∈ Inn(G). Let δ2 = αiβjγk, where 0 ≤ i < 2n, 0 ≤ j ≤ 1 and 0 ≤ k ≤ 1. Now

b = bδ
2
= a(−1)ji(2n−2)b and so 2n+1 | i(2n − 2). Then i = 0, δ2 = βjγk and o(δ) = 2n−1 ≤ 4. Thus

n ≤ 3, a contradiction. If G = D2n+2 ∗ Z4, then

G ∼= ⟨a, b, c|a2n+1
= b2 = [a, c] = [b, c] = 1, a2

n
= c2, ab = a−1⟩,

and Z(G) = ⟨c⟩. We define the automorphisms α, β by aα = a, bα = a−2b, cα = c, aβ = a−1,

bβ = b, cβ = c. Now Inn(G) = ⟨α, β⟩ ∼= D2n+1 and by considering the automorphism δ mentioned

for the previous case, it follows that δ ∈ AutΦZ(G) which implies that |AutΦZ(G) : Inn(G)| > 2. If

G = S2n+2 ∗ Z4, then

G ∼= ⟨a, b, c|a2n+1
= b2 = [a, c] = [b, c] = 1, a2

n
= c2, ab = a−1+2n⟩,
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and Z(G) = ⟨c⟩. Using the automorphisms α, β defined by aα = a, bα = a2
n−2b, cα = c, aβ = a2

n−1,

bβ = b, cβ = c, we have Inn(G) = ⟨α, β⟩ ∼= D2n+1 . Next by defining the automorphism δ mentioned

earlier, it follows that δ ∈ AutΦZ(G) and δ2 ̸∈ Inn(G), by a similar argument. Also if G = D+
2n+3 ∗ Z4,

where n ≥ 4, then

G ∼= ⟨a, b, c, d|b2 = c2 = d4 = [a, d] = [b, d] = [c, d] = [b, c] = 1, ab = a2
n−1, ac = a2

n+1, a2
n
= d2⟩.

We define the automorphisms α, β, γ and δ by aα = a, bα = a2
n−2b, cα = a2

n
c, dα = d, aβ = a2

n−1,

bβ = b, cβ = c, dβ = d, aγ = a2
n+1, bγ = b, cγ = c, dγ = d and aδ = a5, bδ = b, cδ = c, dδ = d.

We observe that Inn(G) = ⟨α, β⟩ × ⟨γ⟩ ∼= D2n+1 × Z2 and |δ| = 2n−1, where n ≥ 4. Finally since

Z(G) = ⟨d⟩, it follows that δ ∈ AutΦZ(G) which implies that |AutΦZ(G) : Inn(G)| > 2. □

From now on we shall consider the case that G is a finite non-abelian 2-group whose Frattini

subgroup is cyclic and cl(G) > 2.

Lemma 3.5. Let G be a non-abelian 2-group with cyclic Frattini subgroup and cl(G) > 2 such that

|AutΦ(G) : Inn(G)| = 2. Then Z(G) ≤ Φ(G) and so G is purely non-abelian group.

Proof. Since cl(G) > 2, by [10, Proposition 3.1], Inn(G) ≨ AutΦZ(G), so AutΦ(G) = AutΦZ(G). Assume

that Z(G) ≰ Φ(G). Then G = M⟨z⟩ for some maximal subgroup M of G and for some z in Z(G)\M .

We choose an element u in Ω1(Φ(G)
∩

Z(G)). The map α : hzi 7→ h(zu)i, where h ∈ M and 0 ≤ i < 2,

is in AutΦ(G) from which we conclude that u = 1, a contradiction. So that Z(G) ≤ Φ(G) and G is

purely non-abelian group. □

For the rest of the paper, we will make use of the notation of Theorem 2.2 without further mention.

Lemma 3.6. If G has one of the following types: D16 ∗Z4 ∗D∗s
8 , S16 ∗Z4 ∗D∗s

8 or D+
32 ∗Z4 ∗D∗s

8 , for

some s ≥ 0, then |AutΦ(G) : Inn(G)| > 2.

Proof. Assume that |AutΦ(G) : Inn(G)| = 2. Then by Lemma 3.5, Z(G) ≤ Φ(G). We observe that

G′ = Φ(G) = Z(G) ∼= Z4. Therefore AutΦ(G) = Inn(G), a contradiction. □

Theorem 3.7. Let G be a finite non-abelian 2-group with cyclic Frattini subgroup. If |AutΦ(G) :

Inn(G)| = 2 and cl(G) > 2, then G has one of the following types: D16 ∗D∗s
8 , Q16 ∗D∗s

8 , S16 ∗D∗s
8 , D+

32 ∗
D∗s

8 or Q+
32 ∗D∗s

8 .

Proof. If s = 0, this is straightforward by using GAP [6], Theorem 2.2 and Lemmas 3.3, 3.4, 3.5, 3.6.

Let s > 0. By our assumption, G = H∗D∗s
8 , whereH has one of the following types quoted in Theorem

2.2. Now by Lemma 3.3 and lemma 3.4, for H = D2n , Q2n , S2n(n ≥ 5) or D+
2n+3 , Q

+
2n+3 , D2n+2 ∗
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Z4, S2n+2 ∗ Z4, D
+
2n+3 ∗ Z4(n ≥ 3), we let σ ∈ Aut

Φ(H)
Z(H)(H) such that σ2 ̸∈ Inn(H). By Lemma 2.5, σ

can be extended to an automorphism σ∗ of G defined by (hx)σ
∗
= hσx for h ∈ H and x ∈ D∗s

8 . Now

since σ∗ ∈ AutΦ(G), it follows that σ∗2 = ig, where ig is the inner automorphism of G induced by

g ∈ G. Writing g = h1x1, where h1 ∈ H and x1 ∈ D∗s
8 , gives

hσ
2
= hσ

∗2
= g−1hg = x−1

1 h−1
1 hh1x1 = h−1

1 hh1,

for all h ∈ H. We conclude that σ2 ∈ Inn(H), a contradiction. So by Lemma 3.6, H = D16, Q16,

S16, D
+
32 or Q+

32, completing the proof. □

The following theorem completes the proof of our main result when G is a finite non-abelian 2-group

whose Frattini subgroup is cyclic and cl(G) > 2.

Theorem 3.8. If G is one of the groups D16, Q16, S16, D
+
32, Q

+
32, D16∗D∗s

8 , Q16∗D∗s
8 , S16∗D∗s

8 , D+
32∗D∗s

8

or Q+
32 ∗D∗s

8 , where s ≥ 0, then |AutΦ(G) : Inn(G)| = 2.

Proof. By Lemma 3.3 and using GAP [6], we have |AutΦ(G) : Inn(G)| = 2, where G stands for either

D16, Q16, S16, D
+
32 or Q+

32. So we give a proof for the group G = D16 ∗ D∗s
8 , where s > 0; the other

groups are treated similarly. We have

G ∼= ⟨a, b, ci, di|a8 = b2 = d21 = · · · = d2s = [a, ci] = [b, ci] = [a, di] = [b, di] = (ab)2 = (cidi)
2 = a4c2i = 1⟩,

where 1 ≤ i ≤ s. It is easily seen that Z(G) ∼= Z2 and therefore Z(G) ≤ G′. So by Theorem 2.1,

|AutZ(G)| = 22s+2. Now we observe that AutZ(G)Inn(G) is a subgroup of AutΦ(G) and so the order

of AutΦ(G) is greater than 22s+4. We claim that |AutΦ(G)| ≤ 22s+4. To see this, since Φ(G) = ⟨a2⟩, it
follows that for σ ∈ AutΦ(G), aσ ∈ {a, a3, a5, a7} and bσ ∈ {b, ba2, ba4, ba6}. If cσi = cia

2 or cσi = cia
6

(1 ≤ i ≤ s), we find that a4 = 1, which is impossible. Hence, cσi = ci or cσi = cia
4 (1 ≤ i ≤ s).

By the above argument, dσi = di or dσi = dia
4 (1 ≤ i ≤ s). Therefore, |AutΦ(G)| = 22s+4 and

|AutΦ(G) : Inn(G)| = 2. □
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