CHARACTERIZATION OF FINITE GROUPS WITH A UNIQUE NON-NILPOTENT PROPER SUBGROUP

BIJAN TAERI AND FATEMEH TAYANLOO-BEYG

ABSTRACT. We characterize finite non-nilpotent groups G with a unique non-nilpotent proper subgroup. We show that $|G|$ has at most three prime divisors. When G is supersolvable we find the presentation of G and when G is non-supersolvable we show that either G is a direct product of an Schmidt group and a cyclic group or a semi direct product of a p-group by a cyclic group of prime power order.

1. Introduction

Throughout the paper all groups are assumed to be finite. Our notation and terminology are standard taken mainly from [8]. In particular the size of a finite group G is shown by $|G|$. The center, the derived subgroup, and the Frattini subgroup of G are denoted by $Z(G)$, G', and $\Phi(G)$, respectively. For $x, g \in G$, $x^g := g^{-1}xg$ is the conjugate of x by g; and $C_G(x)$ is the centralizer x in G. For a subgroup M of G, the centralizer of M in G is denoted by $C_G(M)$. The symbol $G = Y \rtimes X$ indicates that G is a split extension (semi direct product) of a normal subgroup Y of G by a complement X.

Let \mathcal{X} be a class of groups. A group G that is not in \mathcal{X} but each proper subgroup of G is contained in \mathcal{X}, is said to be an \mathcal{X}-critical group or a minimal non-\mathcal{X}-group. Some people have studied the structure of \mathcal{X}-critical groups for a various classes of groups. For example Miller and Moreno [4]
considered the class of abelian groups, \mathcal{A}, and studied \mathcal{A}-critical groups, also called minimal non-abelian groups, and showed that such groups are solvable. Also they showed that if a \mathcal{A}-critical group G is nilpotent, then it is a p-group and $|G : \Phi(G)| = |G : Z(G)| = p^2$. After that Rédei [5] continued the study of minimal non-abelian groups and classified such groups completely. We classified finite groups having a unique non-abelian proper subgroup in [11].

Schmidt [10] considered the class of nilpotent groups, \mathcal{N}, and studied \mathcal{N}-critical groups which also called minimal non-nilpotent groups (or Schmidt groups). Rédei [6] completely classified finite Schmidt groups. Itô [2] considered the minimal non-p-nilpotent groups for p a prime and proved that such groups are just Schmidt groups. Ballester-Bolinches and Esteban-Romero [1], considered the class of supersolvable groups, \mathcal{U}, and studied the structure of \mathcal{U}-critical groups which also called minimal non-supersolvable groups.

Let n be a positive integer. We say that a group G is an n-\mathcal{X}-critical group, if $G \notin \mathcal{X}$ and has exactly $n - 1$ proper subgroups that are not belong to \mathcal{X} and other subgroups belong to \mathcal{X}. Therefore a minimal non-\mathcal{X}-group is just a 1-\mathcal{X}-critical group.

Russo [9] studied 2-\mathcal{N}-critical groups, where \mathcal{N} is the class of nilpotent groups, in infinite case and obtained some results in finite case. Also by the main result in [12], one can see that every finite n-\mathcal{N}-critical groups with $n \leq 21$ is solvable. In this paper we classify finite 2-\mathcal{N}-critical groups, i.e., finite non-nilpotent groups with a unique proper non-nilpotent subgroup. We show that each finite supersolvable 2-\mathcal{N}-critical group is a 2-\mathcal{A}-critical group.

First we characterize finite supersolvable 2-\mathcal{N}-critical groups:

Theorem A. Let G be a finite non-nilpotent supersolvable group. Then G has a unique non-nilpotent proper subgroup if and only if G is one of the following groups.

1. $\langle a, b, c \mid a^p = b^q = c^{q^m} = 1, [a, b] = [a, c] = [b, c^q] = 1, b^c = a^i b^j \rangle$, where p and q are distinct prime numbers $0 \leq i, j \leq p - 1$, $j^q \equiv 1 \pmod{p}$ and if $i \neq 0$, then $1 + j + \cdots + j^{q - 1} \equiv 0 \pmod{p}$,
2. $\langle a, b \mid a^p = b^q^{m+1} = 1, [a, b^q] = 1, a^b = a^i \rangle$, where $q \mid p - 1$, $0 \leq i \leq p - 1$, $i \neq 1$, $m \geq 1$ and $i^{q^2} \equiv 1 \pmod{p}$,
3. $\langle a, b, c \mid a^p = b^{q^m} = c^r = 1, [a, c] = [b, c] = [a, b^q] = 1, a^b = a^i \rangle$, where p, q and r are distinct prime numbers, $0 \leq i \leq p - 1$ and $i^q \equiv 1 \pmod{p}$.

By virtue of [11] and using Theorem A, we have the following corollary.

Corollary 1. Let G be a finite supersolvable 2-\mathcal{N}-critical group. Then it is a 2-\mathcal{A}-critical group. The converse is true if the unique non-abelian subgroup of G is non-nilpotent.

Next we characterize 2-\mathcal{N}-critical non-supersolvable groups (in what follows p, q and r are prime numbers):

Theorem B. Let G be a finite non-supersolvable group. Then G is 2-\mathcal{N}-critical if and only if it is one of the following groups.
(I) $H \times \mathbb{Z}_r$, where H is a non-supersolvable Schmidt group whose order is coprime to r.

(II) $H \times \mathbb{Z}_p$, where H is a non-supersolvable Schmidt group of order $p^n q^m$, $q \nmid p - 1$. Also the Sylow p-subgroup of H is an irreducible Q-module over the field of p elements, Q is cyclic and $|Q : C_Q(P)| = q$.

(III) PQ, where $P = G'$ is a minimal normal subgroup of G, $|P| = p^n$, and $Q = \langle c \rangle$ is of order q^2, the order of p modulo q^2 being n. Furthermore $G'\langle c^q \rangle$ is an Schmidt group and G' is a (c^q)-irreducible module.

(IV) $G'QL$, where G' is a non-abelian special p-group of order $2l$, Q is cyclic of order q^m, the order of p modulo q being $2l$. Also $G' \cap L = \Phi(G')$, $|L| = p|\Phi(G')|$, $[L, Q] = 1$, $G'/\Phi(G')$ is a faithful irreducible Q-module and $[\Phi(G'), Q] = 1$. Furthermore $|G'| \leq p^l$.

(V) $G'Q$, where G' is a non-abelian special p-group of rank $2l$, $Q = \langle c \rangle$ is cyclic of order q^{m+1}, the order of p modulo q^2 being $2l$. Also $G'\langle c^q \rangle$ is an Schmidt group, $G'/\Phi(G')$ is a faithful irreducible Q-module and $[\Phi(G'), Q] = 1 = [P, c^q]$. Furthermore $|G'| \leq p^l$.

2. Proofs

We begin by stating the following Theorem on the structure of finite Schmidt groups.

Theorem 2. [10, 5] Let G be a finite Schmidt group. Then $G = P \times Q$, where P is a Sylow p-subgroup and $Q = \langle z \rangle$ is a cyclic Sylow q-subgroup of order $q^r > 1$. Furthermore $Z(G) = \Phi(G) = \Phi(P) \times \langle z^q \rangle$; $G' = P$, $P' = G'' = \Phi(P)$, and one of the following cases hold:

1. q does not divide $p - 1$ and P is an irreducible Q-module over the field of p elements with kernel $\langle z^q \rangle$ in Q. The subgroup P is elementary abelian minimal normal p-subgroup of order p^l where l is the order of p modulo q.

2. P is a non-abelian special p-group, $|P/\Phi(P)| = p^{2m}$, $|P'| \leq p^m$, the order of p modulo q being $2m$, z induces an automorphism in P such that $P/\Phi(P)$ is a faithful irreducible Q-module, and z centralizes $\Phi(P)$.

3. q divides $p - 1$, $P = \langle a \rangle$ is cyclic of order p, and $a^z = a^i$, where i is the least primitive q-th root of unity modulo p.

Note that Schmidt groups satisfying (1) and (2) of Theorem 2 are non-supersolvable and Schmidt groups satisfying (3) are supersolvable. In fact if G is supersolvable and satisfies (1), then since P is a minimal normal subgroup G, Theorem 5.4.7 of [8] implies that $|P| = p$. It follows that $q \mid p - 1$, a contradiction. Also if G satisfies (2) and is supersolvable, then $P/\Phi(P)$ is a minimal normal subgroup of supersolvable Schmidt group $G/\Phi(P)$, which implies that P is cyclic, a contradiction. Finally if G satisfies (3), then $1 < P < G$ is a normal series with cyclic factors and so G is supersolvable.

Let G be a finite non-nilpotent group with a unique non-nilpotent proper subgroup H. It is readily seen that H is an Schmidt group. Furthermore H is a maximal and characteristic subgroup of G.

We have the following simple Lemma.
Lemma 3. Let G be a finite non-nilpotent group with a unique non-nilpotent proper subgroup H. If H is supersolvable, then G is supersolvable.

Proof. Since H is a normal maximal subgroup of G, G/H is cyclic of prime order. Since H is a supersolvable Schmidt group, from Theorem 2, we have $|H| = pq^m$ and a Sylow p-subgroup P of H is cyclic. Now $1 < P < H < G$ is a normal series with cyclic factors and so G is supersolvable.

Proof Theorem A. First we prove that all groups (1) – (3) have exactly one non-nilpotent proper subgroup.

Owing to [11, Theorems E, F and D], the groups (1) – (3) are non-nilpotent supersolvable 2-\mathcal{A}-critical and so are 2-\mathcal{N}-critical groups.

Now we prove the converse of the Theorem. Let H be the only non-nilpotent proper subgroup of G. By Theorem 2, $|H| = pq^m$ and $q | p - 1$. We need to consider three cases $|G : H| \in \{p, q, r\}$, where r is a prime distinct from p and q.

Case 1. $|G : H| = p$. Then $|G| = p^2q^m$. Every proper subgroup of G distinct from H is the direct product of its Sylow subgroups, as such a subgroup is nilpotent. Noticing that each Sylow subgroup of G is abelian, it follows that each non-trivial proper subgroup of G distinct from H is abelian, which implies that G is a 2-\mathcal{A}-critical group. So by [11, Theorem E], G is the group (1).

Case 2. $|G : H| = q$. Then $|G| = pq^{m+1}$. Let P be a Sylow p-subgroup and Q be a Sylow q-subgroup of G. Let $Q_1 = \langle a \rangle$ be a Sylow q-subgroup of H. We claim that Q is cyclic. Suppose for a contradiction that Q is non-cyclic. Hence Q is metacyclic and so $Q = \langle a, b \rangle$. Since $P \langle ab \rangle$ and $P \langle b \rangle$ are nilpotent, $[P, ab] = [P, b] = 1$. So $[P, a] = 1$, a contradiction. Therefore Q is cyclic and consequently G is a 2-\mathcal{A}-critical group. Thus, according to [11, Theorem F], G is the group (2).

Case 3. $|G : H| = r \notin \{p, q\}$. Then $|G| = pq^mr$. As each non-trivial proper subgroup of G distinct from H is nilpotent, it is the direct product of its Sylow subgroups. Noticing that each Sylow subgroup of G is abelian, it follows that each non-trivial proper subgroup distinct from H is abelian. This yields that G is a 2-\mathcal{A}-critical group. Thus, according to [11, Theorem D], G is the group (3).

Proof Theorem B. First we prove that all groups of (I)-(V) are 2-\mathcal{A}-\mathcal{N}-critical. Let G be the group (I). As each subgroup of G is of the form $A \times B$, where A is a subgroup of H and B is a subgroup of \mathbb{Z}_r and H is an Schmidt group, we infer that G is a 2-\mathcal{A}-\mathcal{N}-critical group.

Let G be the group (II). Put $H = G' \times \mathbb{Z}_{q^m}$ and suppose that $|H| = p^nq^m$, where n, m are positive integers. We show that each maximal subgroup M of G distinct from H is nilpotent and so G is 2-\mathcal{N}-critical. First suppose that M is normal in G. If $|M| = |H| = p^nq^m$, then $|M \cap H| = p^{n-1}q^m$. Since H and M are normal maximal subgroups of G, $G' \subseteq M \cap H$, which is impossible. Therefore $|M| \neq |H|$ and hence $|M| = p^{n+1}q^{m-1}$. As $\Phi(G) \subseteq M$ and $q^{m-1} | |\Phi(G)|$, a Sylow q-subgroup of M is normal in M. Thus M is the direct product of its Sylow subgroups and so M is nilpotent. Next, suppose that M is non-normal in G. If $|M| = p^iq^m$, where $0 \leq i \leq n$, then $|M \cap H| = p^{i-1}q^m$. Noticing that $M \cap H$ is a nilpotent normal subgroup of M, it follows that a Sylow q-subgroup of M
is normal in M. Since $F(G) \not\subseteq M$, $|F(G) \cap M| = p^iq^{m-1}$ and so a Sylow p-subgroup of M is normal in M. It follows that M is nilpotent.

If $|M| = p^{j+1}q^j$, where $0 \leq j \leq m - 1$, then since $\Phi(G) \subseteq M$, we have $q^{m-1} \mid |M|$. It follows that each Sylow subgroup of M is normal in M and so M is nilpotent. Therefore G is a 2-\mathcal{N}-critical group.

Let G be the group (III). We put $H = G' \rtimes \langle c^g \rangle$. Then a similar argument shows that every maximal subgroup of G distinct from H is nilpotent and thus G is 2-\mathcal{N}-critical.

Let G be the group (IV). We put $H = G'Q$. Clearly G is a non-nilpotent normal subgroup of G. Since $H \cap L = \Phi(G')$ and $G = HL$, we have

$$1 \neq |G : H| = |HL : H| = |L : H \cap L| \leq |L : \Phi(G')| = p.$$

Since $H = G'Q$ it follows that $q \nmid |G : H| = p$ and so $|G : H| = p$.

Now a similar argument to (II) shows that every maximal subgroup of G distinct from H is nilpotent, which implies that G is a 2-\mathcal{N}-critical group.

Finally, assume that G is the group (V). Let $Q = \langle c \rangle$. Similar to group (II) we can see that $H = G'\langle c^g \rangle$, is the unique non-nilpotent proper subgroup of G.

Now we prove the converse of the Theorem. Suppose that G is non-supersolvable with a unique non-nilpotent proper subgroup H. By virtue of Lemma 3, H is non-supersolvable.

As H is an Schmidt group, $|H| = p^nq^m$ and it is one of the groups of Theorem 2. Since H is non-supersolvable, it can not be of type (3) of Theorem 2. Suppose that P_1 and Q_1 are Sylow p-subgroup and Sylow q-subgroup of H, respectively, where $Q_1 = \langle a \rangle$ is cyclic. Let P and Q be Sylow subgroups of G, where $P_1 \leq P$ and $Q_1 \leq Q$. Note that since P_1 is a characteristic subgroup of H, it follows that $P_1 \unlhd G$. If Q is non-cyclic, then it is meta-cyclic so we can write $Q = \langle a, b \rangle$. Since $P_1\langle ab \rangle$ and $P_1\langle b \rangle$ are proper subgroups of G distinct from H, they are nilpotent. Thus $[P_1, ab] = [P_1, b] = 1$, and so $[P_1, a] = 1$. Hence $H = P\langle a \rangle$ is abelian, which is a contradiction. Therefore Q is cyclic. In the following we assume that $Q = \langle c \rangle$.

We claim that P is normal in G. If $|G : H| \neq p$, then $P = P_1 \unlhd G$. If $|G : H| = p$, then $P \unlhd G$. Otherwise, since every non-normal maximal subgroups of G are nilpotent, G has a normal Sylow subgroup with nilpotent quotient [7, Theorem 1]. Since Q is non-normal and H is non-nilpotent, we must have $P \unlhd G$. Therefore in any case, P is normal in G.

Let $|G : H| = r \notin \{p, q\}$. Then $|G| = p^nq^mr$. Since G is solvable, by 9.1.7 of [8], there exists a Hall p'-subgroup T of G. Since T is a proper subgroup of G distinct from H, it is nilpotent, and hence $T = Q_2 \times R_1$, where $|R_1| = r$ and $Q_2 = Q^g$, for some $g \in G$. Now $R := R_1^{g^{-1}}$ is a Sylow r-subgroup of G and $1 = [Q_2, R_1] = [Q^g, R_1] = [Q, R]^{g^{-1}}$. Hence $[Q, R] = 1$. Also since P is normal in G, PR is a subgroup of G and so is nilpotent. Hence $[P, R] = 1$. It follows that $R \subseteq Z(G)$. Therefore $G \cong H \times \mathbb{Z}_r$, where H is an Schmidt group, the group mentioned in (I).

Now we assume that $|G : H| \in \{p, q\}$. Now two cases occur:
Case 1. \(H\) is of type (1) of Theorem 2. Then \(P_1\) is an elementary abelian irreducible \(Q_1\)-module. Since \(|Q_1 \cap C_H(P_1)| = q^{n-1}\), we have \(|Q_1 : C_{Q_1}(P_1)| = q\). As \(|G/P_1| \in \{pq^m, q^{m+1}\}\) and \(q \nmid p - 1\), so \(G/P_1\) is cyclic. Thus \(G' \subseteq P_1\). On the other hand, by Theorem 2, \(H' = P_1\). Therefore \(G' \subseteq P_1 = H' \subseteq G'\) and so \(G' = P_1\).

If \(|G : H| = p\), then \(Q = Q_1\). Since \(\Phi(P) < P_1\) and \(P_1\) is an irreducible \(Q_1\)-module, \(\Phi(P) = 1\). Since \(P_1\) is a \(Q\)-invariant subgroup of \(P\) and the action of \(Q\) on \(P\) is coprime, by 8.4.5 of \([3]\), \(P_1\) has a \(Q\)-invariant complement \(L\) in \(P\). Since \(LQ\) is nilpotent, \([L, Q] = 1\). Therefore \(G = P_1Q \times L = H \times L\), which is the group (II).

If \(|G : H| = q\), then \(P = P_1\). In this case \(H = PQ_1, q \nmid p - 1\). Since \(Q_1 = \langle c^q \rangle\) acts fixed point freely on \(P\), by 8.1.12 of \([3]\), \(H\) is a Frobenius group. Hence \(\langle c^q \rangle = Z(H) = 1\) and thus \(G = P \times Q \cong P \times \mathbb{Z}_{q^2}\).

Let \(X\) be the set of subgroups of order \(p\) of \(P\). Since \(Q_1\) acts irreducibly on \(P\), it follows that \(Q\) acts irreducibly on \(P\). Hence \(Q\) acts irreducibly on \(X\). In particular by orbit-stabilizer Theorem, \(q^2\) divides \(|X| = (p^q - 1)/p - 1\). Therefore \(G\) is the group (III).

Case 2. \(H\) is the group of type (2) of Theorem 2. In this case \(q \nmid p - 1\). Now similar to the Case 1, we have \(G' = P_1\). If \(|G : H| = p\), then since \(\Phi(P) < P_1\), we have \(\Phi(P) = \Phi(P_1)\). Since \(P/\Phi(P)\) is elementary abelian, \(P_1/\Phi(P)\) has a complement in \(P/\Phi(P)\). Now, 8.4.5 of \([3]\) yields that \(P_1/\Phi(P)\) has a \(Q\)-invariant complement in \(P/\Phi(P)\). Thus \(P/\Phi(P) = P_1/\Phi(P) \times L/\Phi(P)\), where \(L/\Phi(P)\) is a subgroup of \(P/\Phi(P)\). Since \(LQ\) is nilpotent, \([L, Q] = 1\). Therefore \(G = HL = G'QL, G' \cap L = \Phi(G')\) and \(G\) is the group (IV).

Finally assume that \(|G : H| = q\). Then \(P = P_1\) and \(H = G'(c^q)\) is an Schmidt group and \(\langle c^q \rangle\) acts irreducibly on \(G'/\Phi(G')\). Hence \(\langle c \rangle\) also acts irreducibly on \(G'/\Phi(G')\). Since \(P/\langle c' q^2 \rangle\) and \(\Phi(G')Q\) are proper subgroups distinct from \(H\), they are nilpotent, so \([P, c^q] = \Phi(G'), Q] = 1\). Now similar to the Case (1), the order of \(p\) modulo \(q^2\) being \(2l\) and \(|G''| \leq p^l\). So \(G\) is the group (V).

\[\square\]

Acknowledgments

The authors gratefully appreciate the referee for constructive comments and recommendations which shortened our proofs and definitely help to improve the readability and quality of the paper. It should be mentioned that the final version of this paper could not have been refined so well without his/her outstanding efforts.

References

DOI: http://dx.doi.org/10.22108/ijgt.2019.116209.1543

Bijan Taeri
Department of Mathematical Sciences, Isfahan University of Technology, P.O.Box 84156-83111, Isfahan, Iran
Email: b.taeri@cc.iut.ac.ir

Fatemeh Tayanloo-Beyg
Department of Mathematical Sciences, Isfahan University of Technology, P.O.Box 84156-83111, Isfahan, Iran
Email: f.tayanloo@math.iut.ac.ir

DOI: http://dx.doi.org/10.22108/ijgt.2019.116209.1543