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Abstract. A finite group G, in which two randomly chosen subgroups H and K commute, has

been classified by Iwasawa in 1941. It is possible to define a probabilistic notion, which “measures the

distance” of G from the groups of Iwasawa. Here we introduce the generalized subgroup commutativity

degree gsd(G) for two arbitrary sublattices S(G) and T(G) of the lattice of subgroups L(G) of G. Upper

and lower bounds for gsd(G) are shown and we study the behaviour of gsd(G) with respect to subgroups

and quotients, showing new numerical restrictions.

1. The new idea and the main results

We deal with finite groups only. The subgroup commutativity degree of a group G is defined by

(1.1) sd(G) =
|{(X,Y ) ∈ L(G)× L(G) | XY = Y X}|

|L(G)| |L(G)|
in [15, Page 2509] and represents the probability of commuting subgroups in the subgroups lattice

L(G) of G. Iwasawa [7] gave the first classifications of groups rich in commuting subgroups (see also

[5, 13]). The subgroup commutativity degree extends the probability of commuting elements in G

(known as commutativity degree of G, see [1, 2, 3, 6]) to the context of lattice theory. Given two

sublattices S(G) and T(G) of L(G), we can rephrase (1.1) via the characteristic function

(1.2) χ : (H,K) ∈ S(G)× T(G) 7−→ χ(H,K) =

{
1, if HK = KH,

0, if HK ̸= KH,
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noting that χ(H,K) = 1 if and only if HK ∈ L(G). In particular, if S(G) = T(G) = L(G), then it

has been shown in [15, Page 2511] that (1.1) becomes exactly

(1.3) sd(G) =

(
1

|L(G)| · |L(G)|

) ∑
(H,K)∈L(G)×L(G)

χ(H,K).

Therefore (1.3) can be taken as an equivalent definition of the subgroup commutativity degree and it

allows us to introduce the following new notion, which generalizes those in [8, 9, 10, 11, 15].

Definition 1.1. For a group G and two sublattices S(G) and T(G) of L(G), the number

gsd(G) =

(
1

|S(G)| · |T(G)|

) ∑
(H,K)∈S(G)×T(G)

χ(H,K)

is the generalized subgroup commutativity degree of G.

Of course, gsd(G) = sd(G) when S(G) = T(G) = L(G), so it turns out to generalize in particular

the invariants in [11, 12, 15, 16, 17]. Now consider a normal subgroup N of G and introduce

α(S(G/N), S(N)) =
1

|S(G)|2
·
(
(|S(N)|+ |S(G/N)| − 1)2 + (gsd(N)− 1) · |S(N)|2

(1.4) +(gsd(G/N)− 1) · |S(G/N)|2
)
,

which is only depending on S(G/N) and S(N). Similarly we may consider the sets

(1.5) A1 = {X ∈ S(G) | N ⊆ X}, A2 = {X ∈ S(G) | X ⊂ N}

(1.6) B1 = {X ∈ T(G) | N ⊆ X}, and B2 = {X ∈ T(G) | X ⊂ N}

and introduce the quantities

(1.7) gsd1(G) =
1

|A1 ∪A2|2
∑

(X,Y )∈(A1∪A2)2

χ(X,Y )

depending on S(G) and N ;

(1.8) gsd2(G) =
1

|B1 ∪B2|2
∑

(X,Y )∈(B1∪B2)2

χ(X,Y ).

depending on T(G) and N ;

(1.9) gsd3(G) =
1

|A1| · |B1|
∑

(X,Y )∈A1×B1

χ(X,Y )

depending on S(G), T(G) and N . Then one can consider the quantity

(1.10) β(S(G),T(G), N) =
1

|S(G)| |T(G)|
(|A1| |B1| gsd3(G) + |B1 −A1|+ |A1 −B1|)

depending on S(G), T(G) and N . Our first main result deals with new bounds for the generalized

subgroup commutativity degree in terms of (1.1), (1.7), (1.8), (1.9).
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Theorem 1.2. Assume that two given sublattices S(G) and T(G) of L(G) satisfy S(G)∩T(G) ⊆ N(G),

where N(G) is the sublattice of the normal subgroups of G.

(i). If S(G) = T(G), then gsd1(G) = gsd2(G) and

|L(G)|2 sd(G) ≥ |S(G)|2 gsd(G) ≥ |A1 ∪A2|2 gsd1(G).

(ii). If S(G) ̸= T(G) and A1 ×B1 ⊆ (S(G)− (S(G) ∩ T(G)))× (T(G)− (S(G) ∩ T(G))), then

|L(G)|2 sd(G) ≥ |S(G)| |T(G)| gsd(G) ≥ |A1| |B1| gsd3(G).

Our second main result deals with semidirect products N ⋊H with normal factor N .

Theorem 1.3. If G = N ⋊H and N ∈ S(G) ∩ T(G), then

gsd(G) ≥ max{α(S(G/N),S(N)), β(S(G),T(G), N)}.

The real issue, which we leave open, is the possibility to have an approach in terms of characters and

representation theory for the generalized subgroup commutativity degree. It has been shown in [12,

Theorem 3.2] that the “strong subgroup commutativity degree” (defined as (1.1), but replacing the

condition “HK = KH” by the condition “[H,K] = 1”) can be regarded as a generalized Q-character

of G. Therefore:

Question 1.4. Is it possible to formulate Definition 1.1 in terms of generalized characters of G ?

Because if this is possible, then one can find important relations with the theory of the so-called

T -systems in [4] and with corresponding problems on probabilities on words in [14].

2. Properties of measures and natural bounds

A computational advantage may be found in the calculation of gsd(G1×G2), where G1 and G2 are

two given groups.

Corollary 2.1. Let G1 and G2 be groups of coprime orders. Then

gsd(G1 ×G2) = gsd(G1) · gsd(G2).

Proof. Using [13, Theorem 1.6.9] from gcd(G1, G2) = 1, we have L(G1) ∩ L(G2) = {1}, so S(G1) ∩
S(G2) = {1} and T(G1) ∩ T(G2) = {1}. Then S(G1 × G2) = S(G1) × S(G2) and T(G1 × G2) =

T(G1)× T(G2). Therefore

|S(G1 ×G2)| · |T(G1 ×G2)| · gsd(G1 ×G2)

=
∑

(Y1,Y2)∈T(G1×G2)

(X1,X2)∈S(G1×G2)

χ((X1, X2), (Y1, Y2)) =
∑

(X2,Y2)∈S(G2)×T(G2)

(X1,Y1)∈S(G1)×T(G1)

χ(X1 × Y1, X2 × Y2)

=

 ∑
(X1,Y1)∈S(G1)×T(G1)

χ(X1, Y1)

 ·

 ∑
(X2,Y2)∈S(G2)×T(G2)

χ(X2, Y2)
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= (|S(G1)| · |T(G1)| · gsd(G1)) · (|S(G2)| · |T(G2)| · gsd(G2))

□

If G1, G2,. . . ,Gn are groups such that gcd(|Gi|, |Gj |) = 1 for all i, j ∈ {1, . . . , n}, then Corollary 2.1

may be generalized to

(2.1) gsd(G1 ×G2 × · ×G2) = gsd(G1) · gsd(G2) · · · gsd(Gn).

The proof is omitted because it is by analogy with that of Corollary 2.1.

A classical situation, where we can apply (2.1), is when G is abelian. Recall that an abelian group

G of order n = pn1
1 pn2

2 · · · pnm
m , where p1, p2, . . . , pm are distinct primes and n1, n2, . . . , nm are positive

integers, has a canonical decomposition of the form G = G1 ×G2 × · · · ×Gm, where G1, G2, . . . , Gm

are called pi− primary components. It is well known from [13, Theorem 1.6.9] that a nilpotent group

G has L(G) = L(G1) × L(G2) × · · · × L(Gm) and we have |L(G)| = |L(G1)| |L(G2)| · · · |L(Gm)|.
The following consequence of Corollary 2.1 reduces the study of gsd(G) for a nilpotent group G to

p-groups.

Corollary 2.2. If G is nilpotent and Gi a pi− primary component, then gsd(G) =
∏m

i=1 gsd(Gi).

Introducing the symbol S⊥(G) for the sublattice of L(G) containing all subgroups X of G which

are permutable with all S ∈ S(G), the following result is straightforward, so we omit its proof.

Corollary 2.3. In a group G we have gsd(G) = 1 if and only if S(G) ⊆ T⊥(G) or T(G) ⊆ S⊥(G).

We show that the generalized subgroup commutativity degree of G is naturally upper bounded by

the subgroup commutativity degree of G.

Lemma 2.4. In a group G we have

|S(G)| · |T(G)|
|L(G)|2

· gsd(G) ≤ sd(G)

and the bound is achieved, if S(G) = T(G) = L(G). Viceversa, if the previous bound is exact, then∑
(X,Y )∈S(G)×T(G)

χ(X,Y ) ≥
∑

(X,Y )∈L(G)×L(G)

χ(X,Y ).

Proof. Since S(G)× T(G) ⊆ L(G)2, we have

{(X,Y ) ∈ S(G)× T(G) | XY = Y X} ⊆ {(X,Y ) ∈ L(G)2 | XY = Y X}.

Then |S(G)| |T(G)| gsd(G) = |{(X,Y ) ∈ S(G) × T(G) | XY = Y X}| ≤ |{(X,Y ) ∈ L(G)2 | XY =

Y X} = |L(G)|2 sd(G) therefore the bound follows and is clearly achieved when S(G) = T(G) = L(G).

On the other hand, if the bound is exact, then

|{(X,Y ) ∈ S(G)× T(G) | XY = Y X}| = |{(X,Y ) ∈ L(G)× L(G) | XY = Y X}|,
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where the condition S(G)× T(G) ⊆ L(G)2 shows that

|{(X,Y ) ∈ S(G)× T(G) | XY = Y X}| ≤ |{(X,Y ) ∈ L(G)× L(G) | XY = Y X}|

is always satisfied. The result follows. □

Another basic property is to relate gsd(G) with quotients and subgroups of G.

Lemma 2.5. If H is a subgroup of G, then

gsd(G) ≥ |S(H)| · |T(H)|
|S(G)| · |T(G)|

· gsd(H).

Proof. Since S(H)× T(H) ⊆ S(G)× T(G) and

S(G)× T(G) =
(
S(H)× T(H)

)
∪
(
(S(G)− S(H))× (T(G)− T(H))

)
,

we have that

|S(G)| · |T(G)| · gsd(G) =
∑

(X,Y )∈S(G)×T(G)

χ(X,Y )

=
∑

(X,Y )∈S(H)×T(H)

χ(X,Y ) +
∑

(X,Y )∈(S(G)−S(H))×(T(G)−T(H))

χ(X,Y )

≥
∑

(X,Y )∈S(H)×T(H)

χ(X,Y ) = |S(H)| · |T(H)| · gsd(H).

□

In particular we have the following result for semidirect products.

Lemma 2.6. If G = N ⋊H, then

gsd(G) ≥ |S(G/N)| · |T(G/N)|
|S(G)| · |T(G)|

· gsd(G/N).

Proof. Note that H ≃ G/N and apply Lemma 2.5. □

Most of the results which we have seen in this section will be applied to the proof of Theorem 1.3.

In particular, the above lemma will play an important role.

3. The main results and their proofs

We lower bound sd(G) and gsd(G) in terms of (1.7), (1.8), and (1.9).

Proof of Theorem 1.2. Case (i). We note that (A1∪A2)× (B1∪B2) ⊆ S(G)×T(G), but S(G) = T(G)

implies A1 = B1, A2 = B2 so

(3.1)
∑

(X,Y )∈S(G)×S(G)

χ(X,Y ) ≥
∑

(X,Y )∈(A1∪A2)×(B1∪B2)

χ(X,Y )

=
∑

(X,Y )∈(A1∪A2)×(A1∪A2)

χ(X,Y ) = gsd1(G) · |A1 ∪A2|2,
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on the other hand

(3.2) gsd1(G) · |A1 ∪A2|2 =
∑

(X,Y )∈(B1∪B2)×(B1∪B2)

χ(X,Y )

and gsd1(G) = gsd2(G) follows. Note that (3.1) gives

(3.3) |S(G)| · |S(G)| · gsd(G) ≥ gsd1(G) · |A1 ∪A2|2

and now the result follows from Lemma 2.4.

Case (ii). We begin to write

S(G) =
(
S(G)− (S(G) ∩ T(G))

)
∪ (S(G) ∩ T(G))

and, since the same is true also for T(G), we get

(3.4)
(
S(G)− (S(G) ∩ T(G)) ∪ (S(G) ∩ T(G))

)
×

(
(T(G)− (S(G) ∩ T(G)) ∪ (S(G) ∩ T(G))

)
=

(
(S(G)− (S(G) ∩ T(G)))× (T(G)− (S(G) ∩ T(G)))

)
∪
(
(S(G)− (S(G) ∩ T(G)))× (S(G) ∩ T(G))

)
∪
(
(S(G) ∩ T(G))× (T(G)− (S(G) ∩ T(G)))

)
∪
(
(S(G) ∩ T(G))× (S(G) ∩ T(G))

)
= S(G)× T(G).

Therefore

(3.5)
∑

(X,Y )∈S(G)×T(G)

χ(X,Y ) =
∑

X∈S(G)−(S(G)∩T(G))

Y ∈T (G)−(S(G)∩T(G))

χ(X,Y )+

∑
X∈S(G)−(S(G)∩T(G))

Y ∈S(G)∩T(G)

χ(X,Y ) +
∑

Y ∈T(G)−(S(G)∩T(G))

X∈S(G)∩T(G)

χ(X,Y ) +
∑

X∈S(G)∩T(G)

Y ∈S(G)∩T(G)

χ(X,Y )

=
( ∑
X∈S(G)−(S(G)∩T(G))

Y ∈T (G)−(S(G)∩T(G))

χ(X,Y )
)
+ |S(G)− (S(G) ∩ T(G))| |S(G) ∩ T(G)|+

+|T(G)− (S(G) ∩ T(G))| |S(G) ∩ T(G)|+ |S(G) ∩ T(G)|2

(3.6) =
( ∑
X∈S(G)−(S(G)∩T(G))

Y ∈T (G)−(S(G)∩T(G))

χ(X,Y )
)
+ |S(G) ∩ T(G)| ·

(
|S(G)|+ |T(G)| − |S(G) ∩ T(G)|

)

(3.7) ≥
∑

X∈S(G)−(S(G)∩T(G))

Y ∈T (G)−(S(G)∩T(G))

χ(X,Y )

Therefore by our assumption,∑
(X,Y )∈S(G)×T(G)

χ(X,Y ) ≥
∑

X∈S(G)−(S(G)∩T(G))

Y ∈T (G)−(S(G)∩T(G))

χ(X,Y ) ≥
∑
X∈A1

Y ∈B1

χ(X,Y )

Hence the result follows. □
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We can not remove the additional condition of Theorem 1.2 (ii) because of the following example.

Example 3.1. The dihedral group of order 8 is D8 = ⟨a, b | a2 = b4 = 1, a−1ba = b−1⟩ and has

L(D8) = {{1}, ⟨b⟩, ⟨b2⟩, ⟨a⟩, ⟨ba⟩, ⟨b2a⟩, ⟨b3a⟩, {1, b2, a, b2a}, {1, b2, ba, b3a}, D8}.

Denoting B = ⟨b⟩, Z(D8) = ⟨b2⟩, M1 = {1, b2, a, b2a}, M2 = {1, b2, ba, b3a}, we have N(D8) =

{D8, {1}, B, Z(D8),M1,M2}. Notice that H = ⟨b2a⟩ and K = ⟨a⟩ are contained in M1, while U =

⟨ba⟩ and V = ⟨b3a⟩ in M2. Suppose to have the following two sublattices of L(D8); S(G) =

{{1}, H,K,M1, Z(D8), B,D8} and T(G) = {{1}, U, V,M2, Z(D8), B,D8}, and choose now A1 =

{Z(D8),M1, B,D8} and B1 = {Z(D8),M2, B,D8}. Then S(G) ∩ T(G) = {Z(D8), B,D8}, S(G) −
(S(G) ∩ T(G)) = {{1},H,K,M1}, T(G) − (S(G) ∩ T(G)) = {{1}, U, V,M2} and of course Z(D8) ×
Z(D8) ∈ A1 ×B1 but Z(D8)× Z(D8) ̸∈ (S(G)− (S(G) ∩ T(G)))× (T(G)− (S(G) ∩ T(G))).

Now we begin with a first case of the proof of Theorem 1.3.

Lemma 3.2. If a group G has a normal subgroup N ∈ S(G) and S(G) = T(G), then

gsd(G) ≥ α(S(G/N), S(N)).

Proof. Since N ∈ S(G) and S(G) = T(G), [15, Proposition 2.4] gives a method to calculate gsd1(G):

(3.8) |A1 ∪A2|2 gsd1(G) =
∑

(X,Y )∈(A1∪A2)2

χ(X,Y ) =
∑

X,Y ∈A1∪A2

χ(X,Y )

=
∑

X,Y ∈A1

χ(X,Y ) +
∑

X,Y ∈A2

χ(X,Y ) + 2
∑

X∈A1

∑
Y ∈A2

χ(X,Y ),

and so we evaluate the three terms separately:

(3.9)
∑

X,Y ∈A1

χ(X,Y ) =
∑

(X,Y )∈A1×A1

χ(X,Y ) = gsd(G/N) · |S(G/N)|2;

(3.10)
∑

X,Y ∈A2

χ(X,Y ) =
∑

X,Y ∈A2∪{N}

χ(X,Y )− 2
∑

X∈A2∪{N}

χ(X,N) + 1

= gsd(N) · |S(N)|2 − 2|S(N)|+ 1;

(3.11) 2
∑

X∈A1

∑
Y ∈A2

χ(X,Y ) = 2 |A1| · |A2| = 2 |S(G/N)| · (|S(N)| − 1).

Therefore we may apply Theorem 1.2 (i), and we get the result. □

Now we focus on the case of a semidirect product.

Lemma 3.3. Assume G = N ⋊H and N ∈ S(G) ∩ T(G). If S(G) ̸= T(G), then

gsd(G) ≥ β(S(G),T(G), N).
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Proof. Since S(G) ̸= T(G), the argument of Lemma 3.2 gives problems due to the application of

Theorem 1.2 (i) in its final part. On the other hand,

(3.12) gsd(G/N) |S(G/N)| |T(G/N)| =
∑

X,Y ∈A1∪B1

χ(X,Y )

=
∑

X∈A1

Y ∈B1

χ(X,Y ) +
∑

X∈B1−A1

Y ∈B1

χ(X,Y ) +
∑

X∈A1∪B1

Y ∈A1−B1

χ(X,Y )

and the fact that N ∈ A1 ∪B1 and N ∈ B1 imply∑
X∈B1−A1

Y ∈B1

χ(X,Y ) +
∑

X∈A1∪B1

Y ∈A1−B1

χ(X,Y ) ≥ |B1 −A1|+ |A1 −B1|

and we may conclude

gsd(G/N) |S(G/N)| |T(G/N)| ≥ |A1| |B1| gsd3(G) + |B1 −A1|+ |A1 −B1|.

Now the result follows from Lemma 2.6. □

Note that the proof of Lemma 3.3 shows a lower bound of independent interest.

Corollary 3.4. If G = N ⋊H and N ∈ S(G) ∩ T(G) with S(G) ̸= T(G), then

|S(G/N)| |T(G/N)| gsd(G/N) ≥ gsd3(G) |A1| |B1|.

We collect the result we obtained and our second main result follows.

Proof of Theorem 1.3. It follows from Lemmas 3.2 and 3.3. □

4. Applications

There are some interesting specializations of Theorem 1.3.

Corollary 4.1. Assume that G = N ⋊H has N ∈ S(G) ∩ T(G). If gsd(N) = gsd(G/N) = 1, then

gsd(G) ≥ max

{(
|S(N)|+ |S(G/N)| − 1

|S(G)|

)2

, β(S(G),T(G), N)

}
.

Proof. Application of Theorem 1.3. □

A classical situation, in which Corollary 4.1 is applicable, is when G = N ⋊H is metabelian. Here

if N = G′ and S(G) = T(G) = L(G), then we get exactly [15, Corollary 2.5].

Corollary 4.2. Assume G = N ⋊H and N ∈ S(G) ∩ T(G). If N is of prime index, then

gsd(G) ≥ max

{
gsd(N) · |S(N)|2 + 2|S(N)|+ 1

|S(G)|2
, β(S(G),T(G), N)

}
.

Proof. Since N is of prime index, |S(G/N)| = |T(G/N)| = 2 and gsd1(G/N) = gsd2(G/N) = 1. The

result follows from Theorem 1.3. □
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It is useful to compare Corollary 4.2 with [15, Corollary 2.6]. We now offer an example in which

the conditions of Theorem 1.3 are satisfied.

Example 4.3. The symmetric group G = S3 has a unique minimal normal subgroup N = A3 and this

is atomic, that is, it covers the identity element in L(S3) (see [13]). Here any choice of S(G) and T(G)

satisfies the assumptions of Theorem 1.3 with N ∈ S(G) ∩ T(G). On the other hand, if we consider

G = S4, then there is again a normal subgroup N = A4, but it is well known that A4 is not atomic in

L(S4), so for G = S4 an appropriate choice of N , depending on a corresponding choice for S(G) and

T(G) must be taken into account (because in general the condition N ∈ S(G)∩T(G) might be false).

More generally for an odd prime p and r ≥ 1,

G = ⟨x, a1, a2, . . . , ar | x2 = ap1 = ap2 = · · · = apr = 1, x−1aix = a−1
i , [ai, aj ] = 1, ∀ i, j ∈ {1, 2, . . . , r}⟩

is of order 2pr may be written in the form G = N ⋊H, where N is an elementary abelian p-subgroup

of rank r and H = Z2 = ⟨x⟩ is of order two acting on N by inversion. Here N turns out to be atomic

in L(G). Here G satisfies the assumptions of Theorem 1.3, when S(G) and T(G) are chosen in such a

way that N ∈ S(G) ∩ T(G).

The presence of atomic normal subgroups implies the following result.

Corollary 4.4. If N is an atomic normal subgroup of G = N ⋊H, N ∈ S(G) and S(G) = T(G), then

gsd(G) is lower bounded by a function depending only on G/N , namely

gsd(G) ≥ 1

|S(G)|2
·
(
gsd1(G/N).|S(G/N)|2 + 2|S(G/N)|+ 1

)
.

Proof. Assume S(G) = T(G) and N ∈ S(G). We can calculate gsd1(G) by the argument in Lemma

3.2. Since N is atomic, |S(N)| = 2 and gsd1(N) = 1, and so we may apply Theorem 1.2 (i) and

Lemma 3.2, getting the result. □

We shall compute α(S(G/N),S(N)) and β(S(G),T(G), N) explicitly if G has an abelian normal

subgroup N = Zpα1 × Zpα2 with 1 ≤ α1 ≤ α2 and prime p. This will involve a polynomial function

which has been studied in [17].

Corollary 4.5. Suppose a group G = N⋊H has an abelian subgroup N = Zpα1×Zpα2 with 1 ≤ α1 ≤ α2

and p prime. If N ∈ S(G) and S(G) = T(G) with H ≃ G/N of prime order, then

gsd(G) ≥ 1

(p− 1)4 · |S(G)|2
· [(α2 − α1 + 1)pα1+2 − (α2 − α1 − 1)pα1+1 − (α2 + α1 + 3)p

+(α2 + α1 + 2)]2.

Proof. Assume S(G) = T(G) and N = Zpα1 × Zpα2 ∈ S(G). From Lemma 3.2,

gsd(G) ≥ 1

|S(G)|2
·
(
(|S(N)|+ |S(G/N)| − 1)2 + (gsd(N)− 1) · |S(N)|2

+(gsd(G/N)− 1) · |S(G/N)|2
)
.
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Since gsd(G/N) = gsd(N) = 1 and |S(G/N)| = 2, we obtain

gsd(G) ≥
( |S(N)|+ 1

|S(G)|

)2
.

Now [17, Theorem 3.3] implies that

|S(N)| = 1

(p− 1)2
· [(α2 − α1 + 1)pα1+2 − (α2 − α1 − 1)pα1+1 − (α2 + α1 + 3)p

+(α2 + α1 + 1)]

and then,( |S(N)|+ 1

|S(G)|

)2
=

1

(p− 1)4 · |S(G)|2
· [(α2 − α1 + 1)pα1+2 − (α2 − α1 − 1)pα1+1 − (α2 + α1 + 3)p

+(α2 + α1 + 1) + 1]2.

□

Corollary 4.5 improves [11, Lemma 2.6], where specific choices of the sublattices are involved.

Another generalization is reported separately for the subgroup commutativity degree.

Corollary 4.6. In the same assumptions of Corollary 4.5,

sd(G) ≥ 1

(p− 1)4 · |L(G)|2
· [(α2 − α1 + 1)pα1+2 − (α2 − α1 − 1)pα1+1 − (α2 + α1 + 3)p

+(α2 + α1 + 2)]2.

Proof. See Lemma 2.4 and Corollary 4.5. □

Note that Corollary 4.6 improves the bound in [11, Theorem 2.8].
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