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GELFAND PAIRS ASSOCIATED WITH THE ACTION OF GRAPH

AUTOMATON GROUPS

MATTEO CAVALERI, DANIELE D’ANGELI AND ALFREDO DONNO∗

Abstract. Graph automaton groups constitute a special class of automaton groups constructed from

a graph. In this paper, we show that the action of any graph automaton group on each level of the

rooted regular tree gives rise to a Gelfand pair. In particular, we determine the irreducible submodules

of the action of such a group on the space of functions defined on each level of the tree, and we exhibit

the corresponding spherical functions.

1. Introduction

Automaton groups can be regarded as automorphism groups of rooted regular trees and they are

important examples of groups that have peculiar and exotic properties. Strongly developed after the

introduction of the Grigorchuk group [13], which was the first example of a group of intermediate

growth (i.e., faster than polynomial and slower than exponential), the theory of automaton groups

(and more generally the theory of self-similar groups) has led to the discovery of new examples of

amenable groups, of groups with intermediate growth, and of iterated monodromy groups of complex

maps (we refer the interested reader to [2, 14, 15] and references therein for more details on this

theory). In the last decades, automaton groups have been studied from different points of view:

algebraic, geometric and combinatorial (e.g., in relation to the structure of the associated Schreier

graphs), dynamical (looking at their action on the boundary of the tree), and algorithmic (in relation

to decision problems). Gelfand pairs in the context of self-similar groups were studied in [1, 3] and
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further investigated in [9, 10, 11]. The theory of Gelfand pairs is strictly related to harmonic analysis

and representation theory and has very important applications also in probability and statistics (see,

for instance, [12]). Let G be a group and let K be a subgroup of G. Then (G,K) is said to be a

Gelfand pair if the algebra of bi-K-invariant functions on G is commutative under convolution, or,

equivalently, when the associated permutation representation, that is, the representation of G on the

space L(X) of functions defined on the homogeneous space X = G/K, is multiplicity-free (for more

details about the theory of Gelfand pairs of finite groups we refer the reader to [7, 8] and to [6] for

the case of the action of group compositions on trees and related substructures).

In this paper, we consider a class of automaton groups, called graph automaton groups, introduced

in [4]. Such groups are built starting from a finite graph and have a number of interesting properties:

e.g., they are amenable with exponential growth, they are fractal and regular weakly branch over their

commutator subgroup, and they are strictly related to the theory of right-angled Artin groups. In

[5], we studied Schreier graphs of the action of graph automaton groups obtained by restricting the

general construction introduced in [4] to the special case where the finite graph is a star, giving an

explicit description of their spectrum and a classification up to isomorphism.

By taking the quotient modulo the stabilizer of a given level of the tree, one can focus the attention

on the action of a graph automaton group on the n-th level Ln of the tree. In this way, one obtains a

finite group Gn. We show that (Gn,Kn) is a Gelfand pair, where Kn is the stabilizer of a fixed vertex

of Ln. This follows from the fact that the action of each graph automaton group on the tree levels is

2-points homogeneous and this allows to establish that (Gn,Kn) is a symmetric Gelfand pair and to

explicitly determine the associated spherical functions.

2. Preliminaries

2.1. The rooted q-ary tree Tq. For each integer q ≥ 2, let Tq denote the rooted q-ary tree, i.e., the

rooted tree in which each vertex has q children. If X = {0, 1, . . . , q − 1} is an alphabet of q letters,

we denote by Xn = {x1 · · ·xn : xi ∈ X} the set of words of length n over X, and put X∗ =
⋃∞

n=0X
n,

where X0 = {∅} and ∅ denotes the empty word. In this way, each vertex in the n-th level Ln of Tq

can be naturally identified with a word of Xn.

Notice that the level Ln of Tq or, equivalently, the set Xn, can be endowed with an ultrametric

distance d, defined in the following way: if v = x1 · · ·xn and w = y1 · · · yn, then

d(v, w) = n− |{i : xk = yk, ∀k ≤ i}|.

In this way, the space (Ln, d) becomes an ultrametric space, and in particular a metric space, on which

the automorphism group Aut(Tq) acts by isometries. Note that the diameter of (Ln, d) is exactly n.

Moreover, one can observe that d = d′/2, where d′ denotes the usual geodesic distance on Tq. In order

to indicate the action of an automorphism g ∈ Aut(Tq) on a vertex v of Tq, we will use the notation

g(v).
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Figure 1. The first three levels of the tree T3.

Example 2.1. In Fig 1 the first three levels of the tree T3 are depicted. If we focus, for instance, on

the third level L3, then its vertices are identified with the word set {0, 1, 2}3. One has, for instance,

d(000, 002) = 1; d(000, 021) = 2; d(000, 211) = 3. In particular, all vertices associated with words

starting with 1 or 2 have ultrametric distance 3 from the vertex 000; the diameter of (L3, d) is 3.

2.2. Self-similar and fractal groups. The following definitions about self-similar groups, fractal

groups, automaton groups can be found, for instance, in [2, 15].

An automorphism group G of Tq is self-similar if, for every g ∈ G, x ∈ X, there exist gx ∈ G,

x′ ∈ X such that

(2.1) g(xw) = x′gx(w),

for all w ∈ X∗. This allows to embed a self-similar group G into the wreath product G o X =

(Gq) o Sym(q), where Sym(q) is the symmetric group on q elements. In words, the automorphism g

maps the subtree of Tq rooted at the vertex x of the first level of Tq to the (isomorphic) subtree rooted

at the vertex x′, and the automorphism gx ∈ G represents the restriction of the action of G on such a

subtree. Therefore, it is possible to represent any automorphism g ∈ G as

g = (g0, . . . , gq−1)σ

where σ ∈ Sym(q) is the permutation induced by the action of g on the vertices of the level L1 of Tq

and gi ∈ G is the restriction of the action of g on the subtree rooted at the vertex i of L1, for each

i = 0, . . . , q − 1.

For a self-similar group G ≤ Aut(Tq), the stabilizer of the vertex v ∈ Tq is the subgroup of G

defined as StabG(v) = {g ∈ G : g(v) = v} and the stabilizer of the n-th level is given by StabG(Ln) =⋂
v∈Ln

StabG(v). Observe that StabG(Ln) is a normal subgroup of G of finite index, for each n ≥ 1.

In particular, an automorphism g ∈ StabG(L1) is completely determined by the q-tuple (g0, . . . , gq−1),
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where gi describes the action of g on the subtree rooted at the vertex i of L1, which is clearly isomorphic

to the entire tree Tq. Therefore, we get the following embedding

(2.2) ϕ : StabG(L1) −→ G×G× · · · ×G︸ ︷︷ ︸
q times

that associates with g the q-tuple (g0, g1, . . . , gq−1). Moreover, the group G is said to be fractal if the

map ϕ in Eq. (2.2) is a subdirect embedding, that is, it is surjective on each factor. Finally, we say

that the action of G ≤ Aut(Tq) is spherically transitive if it is transitive on each level of the tree. It is

easy to check that, if the action of G on Tq is spherically transitive, then the subgroups StabG(v) are

all conjugate, for each v ∈ Ln. Let G be a spherically transitive group and suppose that there exists

a nontrivial normal subgroup K in G such that ϕ(K ∩ StabG(L1)) ≥ K ×K × · · · ×K. Then G is

said to be regular weakly branch over K. It is worth mentioning that this property for the subgroup

K is stronger than fractalness, since the map ϕ is surjective on the whole product K ×K × · · · ×K.

2.3. Automaton groups. Self-similar groups can be alternatively represented as automaton groups.

A finite automaton is a quadruple A = (S,X, λ, µ), where:

(1) S is a finite set, called the set of states;

(2) X is a finite set, called the alphabet ;

(3) λ : S ×X → S is the restriction map;

(4) µ : S ×X → X is the output map.

The automaton A is invertible if, for all s ∈ S, the transformation µ(s, ·) : X → X is a permutation

of X. An automaton A can be visually represented by its Moore diagram: this is a directed labeled

graph whose vertices are identified with the states of A. For every state s ∈ S and every letter x ∈ X,

the diagram has an arrow from s to λ(s, x) labeled by x|µ(s, x). A sink in A is a state id ∈ S with

the property that λ(id, x) = id and µ(id, x) = x, for any x ∈ X.

The action of A can be recursively extended to the infinite set X∗ as follows:

λ(s, xw) = λ(λ(s, x), w) µ(s, xw) = µ(s, x)µ(λ(s, x), w),

for each s ∈ S, x ∈ X and w ∈ X∗. According to the self-similar notation of Eq. (2.1), if g(xw) =

x′gx(w), with x, x′ ∈ X and g, gx ∈ G, one has:

λ(s, x) = sx µ(s, x) = s(x) = x′.

Notice that, in a similar way, one can compose the action of the states in S extending the maps λ and

µ to the set S∗. Analogously, since each s represents a bijection of X∗ one can describe the inverse

action s−1 and then consider the automaton group generated by the set S.

2.4. Gelfand pairs and their spherical functions. We conclude this preliminary section by re-

calling some basic elements of the theory of finite Gelfand pairs (see [7], or the monograph [8] and

references therein).
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Let G be a finite group and let K ≤ G. Let us denote by X = G/K = {gK : g ∈ G} the associated

homogeneous space, obtained by considering the left multiplication action of G on the set of left

cosets. In this way, G acts transitively on X and K is the stabilizer of the coset K ∈ X. The space

L(G) = {f : G −→ C} becomes an algebra when endowed with the standard convolution product

defined as

(f1 ∗ f2)(g) =
∑
h∈G

f1(gh)f2(h−1),

for each f1, f2 ∈ L(G) and g ∈ G. Notice that L(X) is a subalgebra of L(G), consisting of all functions

which are K-invariant to the right, on which the group G acts as fg(x) = f(g−1x), for each f ∈ L(X),

g ∈ G and x ∈ X. Similarly, the subspace of L(X) consisting of all K-invariant functions, denoted by

L(K\G/K), is a subalgebra of L(X). In formulae, we have

L(K\G/K) = {f : G −→ C : f(kgk′) = f(g), ∀g ∈ G, k, k′ ∈ K}.

Then (G,K) is said to be a Gelfand pair if the algebra L(K\G/K) of bi-K-invariant functions on G

is commutative with respect to the convolution product inherited from L(G). Also, notice that L(G)

is a commutative algebra if and only if G is an Abelian group. In particular, it follows that if G is

Abelian, then (G,K) is a Gelfand pair for any subgroup K ≤ G. It can be shown that the following

properties are equivalent:

(1) (G,K) is a Gelfand pair;

(2) the decomposition of the space L(X) into irreducible submodules under the action of G is

multiplicity-free, i.e., each irreducible submodule occurs with multiplicity 1;

(3) given an irreducible representation V of G, the dimension of the subspace of K-invariant

vectors V K = {v ∈ V : k(v) = v ∀k ∈ K} is less than or equal to 1, and it is 1 if and only if

V occurs in the decomposition of L(X) into irreducible submodules.

A particular example of a Gelfand pair (G,K) is provided by the so called symmetric Gelfand pairs:

this is the case when, for every g ∈ G, one has g−1 ∈ KgK. It can be shown that this condition is

equivalent to require that, for all x, y ∈ X, the pairs (x, y) and (y, x) belong to the same orbit under

the diagonal action of G on the set X ×X.

Example 2.2. A symmetric Gelfand pair is obtained when the group G acts isometrically on a metric

space (X, d) and its action is 2-points homogeneous: this means that, for all x, x′, y, y′ ∈ X satisfying

the condition d(x, y) = d(x′, y′), there exists g ∈ G such that g(x) = x′ e g(y) = y′. Under this

condition, if K is the stabilizer of an element x0 ∈ X, then the pairs (x, y) and (y, x) always belong

to a same orbit, since d(x, y) = d(y, x) for any choice of x and y.

We can observe that in this case the K-orbits in X (which can be identified with the double cosets of

K in G) are the spheres centered at x0

Sj = {x ∈ X : d(x0, x) = j}.

Hence, a function f ∈ L(X) is K-invariant if and only if it is constant on the spheres Sj .
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If (G,K) is a Gelfand pair and L(X) =
⊕n

i=0 Vi is the decomposition of L(X) into irreducible

submodules, then for each i there exists a unique (up to normalization) bi-K-invariant function φi

whose G-translates generate Vi. In particular, one requires that these functions take value exactly 1

on the element x0 ∈ X stabilized by K. The functions φi, i = 0, 1, . . . , n are called spherical functions

and they form a basis for the algebra L(K\G/K). In particular, the number of K-orbits under the

action of G on X equals the number of spherical functions. As an example, the function φ0 ≡ 1 is

a spherical function: this corresponds to the fact that the trivial representation always occurs in the

decomposition of the space L(X) into irreducible submodules.

3. Gelfand pairs associated with graph automaton groups

In [4] we introduced a new construction associating an invertible automaton with a given finite

graph. The corresponding self-similar group is called graph automaton group. The aim of this section

is to prove that the action of a graph automaton group on the rooted tree gives rise to symmetric

Gelfand pairs. Let us start by recalling the definition of graph automaton group. Observe that the

definition is given here for simple graphs, since the presence of loops and multiedges does not affect

the structure of the group (see [4, Remark 3.2]).

Definition 3.1. Let Γ = (V,E) be a finite simple graph, where V = {x1, . . . , xk} denotes the vertex set

and E is the edge set, endowed with an orientation. Let us denote by e = (xi, xj) an edge connecting the

vertices xi and xj of Γ, and oriented from xi to xj. We define an automaton AΓ = (E ∪ {id}, V, λ, µ)

such that:

• E ∪ {id} is the set of states, where id is a sink;

• V is the alphabet;

• λ : E × V → E ∪ {id} is the restriction map such that, for each e = (xi, xj) ∈ E, one has

λ(e, xk) =

{
e if k = i

id if k 6= i;

• µ : E × V → V is the output map such that, for each e = (xi, xj) ∈ E, one has

µ(e, xk) =


xj if k = i

xi if k = j

xk if k 6= i, j.

In words, any oriented edge e = (xi, xj) is a state of the automaton AΓ and it has just one nontrivial

restriction to itself, and all other restrictions to the sink id. Its action is nontrivial only on the letters

xi and xj , which are switched since e(xi) = xj and e(xj) = xi. It is easy to check that AΓ is invertible

for any given graph Γ = (V,E) and any orientation of E. The group generated by the transformations

of V ∗ associated with the states of AΓ is called graph automaton group associated with the graph Γ,

and it is denoted by GΓ. It follows from the definition that such a group is an automorphism group of
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the rooted regular tree T|V | of degree |V |. Moreover, one can check that the action of GΓ on the tree

is spherically transitive if and only if Γ is connected.

Note that the graph automaton group associated with Γ = (V,E) is well defined since it is inde-

pendent of the orientation of the edges. In fact, changing the orientation of an edge corresponds to

consider the inverse of the associated generator in the group. In [4, Proposition 3.4, Theorem 3.7] the

following properties of graph automaton groups have been proved:

• the graph automaton group GΓ′ constructed starting from a subgraph Γ′ = (V ′, E′) of the

graph Γ = (V,E) is a subgroup of the graph automaton group GΓ;

• if the graph Γ = (V,E) contains at least 2 edges, then the associated graph automaton group is

nonabelian, amenable, fractal, and it is regular weakly branch over its commutator subgroup.

Notice that the case where Γ is the complete graph K2 on two vertices (so that it has only one

edge) gives rise to a graph automaton group, often called the Adding Machine in the context of self-

similar groups, which is isomorphic to the infinite cyclic group (see [4, Example 3.6, Part 1]), which

is Abelian, so that it trivially provides Gelfand pairs. For this reason, we will focus our attention on

graphs containing at least two edges.

We need the following lemma about the action of a spherically transitive group G on the n-th level

Ln of the tree Tq.

Lemma 3.2. Let G act spherically transitively on the rooted regular tree Tq of degree q. Denote by

Gn the quotient group G/StabG(Ln) and by Kn the stabilizer in Gn of a fixed vertex x0 ∈ Ln. Then

the action of Gn on Ln is 2-points homogeneous if and only if Kn acts transitively on each sphere of

Ln centered at x0.

Proof. Suppose thatKn acts transitively on each sphere of Ln centered at x0 and consider four elements

x, y, x′, y′ ∈ Ln such that d(x, y) = d(x′, y′). Since the action of Gn is transitive on Ln, there exists an

automorphism g ∈ Gn such that g(x) = x′. Now

d(x′, g(y)) = d(g−1(x′), y) = d(x, y) = d(x′, y′)

and so g(y) and y′ are in the same sphere of center x′ and radius d(x′, y′). By transitivity, the stabilizer

Kn is conjugate with StabGn(x′) and so there exists an automorphism g′ ∈ StabGn(x′) carrying g(y)

to y′. The composition of g and g′ is the required automorphism.

Suppose now that the action of Gn on Ln is 2-points homogeneous and consider two elements x

and y in the sphere of center x0 and radius r. Then d(x0, x) = d(x0, y) = r. Therefore there exists an

automorphism g ∈ Kn = StabGn(x0) such that g(x) = y. This completes the proof. �

Proposition 3.3. Let Γ = (V,E) be a finite, connected, simple graph with at least 2 edges and let GΓ

be the associated graph automaton group. Then the commutator subgroup G′Γ is spherically transitive

on T|V |.
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Proof. As we have already mentioned, if Γ = (V,E) is a graph that contains at least two edges, then

GΓ is regular weakly branch over its commutator subgroup G′Γ. This means that

ϕ(G′Γ ∩ StabGΓ
(L1)) ≥ G′Γ × · · · × G′Γ︸ ︷︷ ︸

|V | times

,

where ϕ is as in Eq. (2.2). Let us prove our statement by induction on the depth n of the levels of

the rooted regular tree of degree |V |.
Let x, y be elements in L1. Recall that the vertices of L1 are identified with the vertices of Γ, by

definition of GΓ. Since Γ is supposed to be connected, there exists a (not necessarily directed) path

from x to y in Γ. Let e1, e2, . . . , ek be such a path. Let us suppose that ei joins the vertices xi and

xi+1, so that x1 = x and xk+1 = y. Then a direct computation shows that, for each i = 1, . . . , k − 1,

the commutator [ei, ei+1] acts on L1 as the permutation (i, i+ 1, i+ 2) ∈ Sym(|V |). This implies that

g :=
k−1∏
j=1

[ej , ej+1]

is an element of G′Γ such that g(x) = y. The assertion is verified since x and y are arbitrary.

For n > 1, let v = x1x2 · · ·xn and w = y1y2 · · · yn be vertices of Ln. We have two cases: either

x1 = y1 = x or x1 6= y1. First, suppose x = x1 = y1. Then there exists, by the inductive hypothesis,

an element h ∈ G′Γ such that h(x2 · · ·xn) = y2 · · · yn (regarded as elements in Ln−1). By weakly

branchness there exists also g ∈ G′Γ such that gx = h and g(x) = x. This ensures g(v) = w. Now

suppose x1 6= y1. We have already proven that there exists g ∈ G′Γ such that g(x1) = y1. Hence g(v)

and w are words of length n starting with the same letter. The previous argument implies that there

exists h ∈ G′Γ such that h(g(v)) = hg(v) = w and this completes the proof since hg ∈ G′Γ. �

Remark 3.4. It is well known that in any connected graph Γ there exists a vertex x such that Γ\{x}
is still connected. Without loss of generality, we can always assume that such vertex corresponds to

the letter 0 of the alphabet V (the vertex set of Γ). In fact, the name of the vertices can be changed

by taking conjugation with an element of the symmetric group, and this does not change the structure

of the associated graph automaton group.

Proposition 3.5. Let GΓ be the graph automaton group associated with a connected simple graph

Γ = (V,E) with at least 2 edges. Let 0 be a vertex such that Γ\{0} is connected, and let n be a positive

integer. Then, for every k ∈ {0, . . . , n− 1}, for all x, y ∈ V such that x, y 6= 0, there exists gk,x,y ∈ GΓ

such that

• gk,x,y(0n) = 0n,

• gk,x,y(0kx) = 0ky.

Proof. Observe that it is possible to construct an element h of GΓ such that h(0) = 0 and h(x) = y.

In fact, we can remove from Γ the vertex 0 and consider the remaining connected subgraph Γ′. In

Γ′, we can connect x and y through a directed path e1 · · · ek, where each of the ei’s belongs to Γ′ and
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it is not incident to the vertex 0. In particular, regarded as a group element, each of the ei’s acts

trivially on the word 0n, for any n ≥ 1. Moreover, by Definition 3.1, if we put h := e1 · · · ek, we have

h(x) = y. Since GΓ is fractal, there exists g ∈ StabGΓ
(0k) such that g0k = h, for k ∈ {0, 1, . . . , n− 1}.

In particular g(0n) = 0n and g(0kx) = 0ky. Thus g = gk,x,y is the desired element. �

Now we have all ingredients to state and prove our main result.

Theorem 3.6. Let GΓ be the graph automaton group associated with a connected simple graph Γ =

(V,E) with at least 2 edges. Let Gn = GΓ/StabGΓ
(Ln) and Kn = StabGn(0n). Then (Gn,Kn) is a

symmetric Gelfand pair, for all n ≥ 1.

Proof. By Example 2.2 and Lemma 3.2, it is enough to prove that Kn = StabGn(0n) acts transitively

on each sphere of Ln with center 0n. Notice that two vertices v, w ∈ Ln belong to the same sphere if

and only if v = 0kxv′ and w = 0kyw′ for some k ∈ {0, . . . , n− 1}, x, y ∈ V \ {0}, and v′, w′ ∈ V n−k−1.

Let g be the image in Gn of the element gk,x,y ∈ GΓ from Proposition 3.5. In particular, g ∈ Kn

and it satisfies g(0kx) = 0ky. Therefore the vertices g(v) = 0kyv′′ and w both belong to the subtree

rooted at the vertex 0ky of Lk+1. Now Proposition 3.3 guarantees that there exists h ∈ G′Γ such that

h(v′′) = w′. By weak branchness, there exists an element l ∈ G′Γ such that l acts nontrivially only on

the subtree rooted at 0ky and l0ky = h. Let ` be its image in Gn. In particular, ` ∈ Kn and therefore

the element `g ∈ Kn is such that

`g(v) = `g(0kxv′) = `(0kyv′′) = 0kyh(v′′) = 0kyw′ = w.

This concludes the proof. �

Let Γ = (V,E) be a graph with |V | = q and let GΓ be the associated graph automaton group. Let

us consider the action of GΓ (or, equivalently, of the group Gn = GΓ/StabGΓ
(Ln)) on L(Ln). Recall

that each vertex of Ln can be identified with a word x1x2 · · ·xn, where xi ∈ {0, 1, . . . , q − 1}. Denote

by V0
∼= C the trivial representation of GΓ and for every j = 1, . . . , n, define the following subspace

Vj = {f ∈ L(Ln) : f = f(x1 · · ·xj),
q−1∑
x=0

f(x1x2 · · ·xj−1x) = 0}

of dimension qj−1(q − 1). In words, each function of Vj takes a constant value on the leaves of each

subtree rooted at a vertex of Lj , and the sum of these values is 0. One can verify that the Vj ’s

are GΓ-invariant pairwise orthogonal submodules (in fact, they are Aut(Tq)-invariant); now, since the

number of the Vj ’s equals the number of Kn = Gn/StabGn(0n)-orbits in Ln (that is, the number of

spheres of Ln centered at 0n), the Wielandt Lemma (see [7, Lemma 2.21]) ensures that they are also

irreducible submodules, and that the following decomposition holds:

L(Ln) =
n⊕

j=0

Vj .

We get the following description of the spherical functions.
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Corollary 3.7. Let Γ = (V,E) be a graph with |V | = q and let GΓ be the corresponding graph

automaton group. Then, for each n ≥ 1, the spherical functions associated with the Gelfand pair

(Gn,Kn) are

φj(x) =


1 if d(x, 0n) < n− j + 1

1
1−q if d(x, 0n) = n− j + 1

0 if d(x, 0n) > n− j + 1

with j = 0, . . . , n.

Proof. It is enough to observe that, for any j = 0, . . . , n, the function φj belongs to the space Vj , it is

Kn-invariant and it satisfies the property φj(0
n) = 1. �

Example 3.8. If Γ is the cyclic graph C3 on 3 vertices, the associated automaton AC3 is represented

in Fig 2 (see [4, Example 3.6, Part 3]).

Figure 2. The cycle C3 and the associated automaton AC3 .

More precisely, the automaton AC3 generates the group GC3 whose generators have the self-similar

representation:

a = (a, id, id)(0, 1) b = (id, b, id)(1, 2) c = (id, id, c)(2, 0),

where (0, 1), (1, 2), (2, 0) are transpositions in Sym(3).

For each n ≥ 1, the action of GC3 on each level Ln of the rooted ternary tree gives rise to a Gelfand

pair (Gn,Kn) such that

L(Ln) =

n⊕
j=0

Vj

where

Vj = {f ∈ L(Ln) : f = f(x1 · · ·xj),
2∑

x=0

f(x1x2 · · ·xj−1x) = 0}.
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The spherical functions in this case are given by

φj(x) =


1 if d(x, 0n) < n− j + 1

−1
2 if d(x, 0n) = n− j + 1

0 if d(x, 0n) > n− j + 1

with j = 0, . . . , n.
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