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FINITE COVERINGS OF SEMIGROUPS AND RELATED STRUCTURES

CASEY DONOVEN AND LUISE-CHARLOTTE KAPPE∗

Abstract. For a semigroup S, the covering number of S with respect to semigroups, σs(S), is the

minimum number of proper subsemigroups of S whose union is S. This article investigates covering

numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids.

Our three main theorems give a complete description of the covering number of finite semigroups, finite

inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that

is neither monogenic nor a group, its covering number is two. For all n ≥ 2, there exists an inverse

semigroup with covering number n, similar to the case of loops. Finally, a monoid that is neither a

group nor a semigroup with an identity adjoined has covering number two as well.

1. Introduction

The investigations in this paper were motivated by certain results on finite coverings of groups,

loops, and rings. We say a group has a finite covering by subgroups if it is the set-theoretic union of

finitely many proper subgroups. Similarly, an algebraic structure, say a ring, a loop, or a semigroup,

has a finite covering by its algebraic substructures if it is the set-theoretic union of finitely many of its

proper substructures. A minimal covering for a group G is a covering which has minimal cardinality

amongst all the coverings of G. The size of the minimal covering of a group is denoted by σ(G). If

a group has no finite covering, we say its covering number is infinite, i.e. σ(G) = ∞. This group

invariant was introduced in a 1994 paper by J. H. E. Cohn [1], spurring a lot of research activity in

this area. However, the earliest investigations on this topic can be traced back to a 1926 paper by
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Scorza [13], where he proved that σ(G) = 3 if and only if the Klein 4-group is a homomorphic image

of G.

It is an easy exercise to show that no loop is the union of two proper subloops. A simple consequence

of this is that no group is the union of two proper subgroups and no ring is the union of two proper

subrings. However, it was shown by S. Gagola III and the second author [5] that for every integer

n > 2, there exists a loop with covering number n.

The situation for groups is different. Cohn in [1] constructed a solvable group with covering number

pα + 1 for every prime p and α > 0 and conjectured that every finite solvable group has a covering

number of the form pα + 1. This was shown by Tomkinson in [14]. He also showed that there is no

group with covering number 7 and conjectured that there are no groups with covering number 11, 13,

or 15. However, this is only true for n = 11. For details, see [6], where it is described whether n is a

covering number of a group or not, for all n satisfying 2 ≤ n ≤ 129, extending previous results from

26 to 129.

Much less is known about covering numbers of rings, but the results are similar to those concerning

groups. In [10], Lucchini and Maroti classify rings which can be covered by three proper subrings and,

in [16], Werner determines the covering number of various rings which are direct sums of fields. So

far, it has not been explicitly verified if any integer n > 2 is not a covering number of a ring. The

smallest candidate for such a number is n = 13.

For semigroups, the topic of our investigations, the situation is completely different, as can be seen

from the following example. Consider the integers, which form a semigroup under multiplication.

Obviously, they are the union of two subsemigroups, namely the odd and even integers. Semigroups

having a finite covering number other than two, which are not groups, are currently being investigated

in [3]. It is shown that for every n that is a covering number of a group with respect to groups, there

exists an infinite semigroup, that is not a group, with covering number n with respect to semigroups.

As we will show in our first theorem (Theorem 1.4), every finite semigroup, which is not a group

or generated by a single element, has covering number two. The following statistical evidence further

illustrates the situation. There are 1,843,120,128 non-equivalent semigroups of order eight (up to

isomorphism and anti-isomorphism) [12], but only 12 have covering number not equal to two. Of the

remaining 12, eight are generated by a single element and the last four are groups with semigroup

covering number equal to three.

To make our notation more precise, we have to make some formal definitions.

Definition 1.1. (1) A semigroup is a nonempty set S with an associative binary operation.

(2) A monoid M is a semigroup with an identity, i.e. an element 1 ∈M such that 1·m = m = m·1
for all m ∈M .

(3) An inverse semigroup I is a semigroup such that for every element a ∈ I, there exists a unique

element a−1 ∈ I where aa−1a = a and a−1aa−1 = a−1.
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(4) A group G is a monoid such that for every g ∈ G, there exists a unique element g−1 ∈ G

where gg−1 = 1 = g−1g.

In addition to coverings of semigroups by proper subsemigroups, we also consider coverings by

specific subsemigroups, such as semigroups which are groups, inverse semigroups, or monoids. Here,

we give the formal definitions of these algebraic structures and their respective covering numbers.

Definition 1.2. Let U be a subsemigroup of a semigroup.

(1) We say U is an inverse subsemigroup of a semigroup S if U is an inverse semigroup.

(2) We say U is a submonoid of a monoid M if U contains the identity of M .

(3) We say U is a monoidal subsemigroup of a semigroup S if U is a monoid (but could possibly

not contain the identity of the semigroup S, in case S is a monoid).

Definition 1.3. For an algebraic structure A, as given in Definition 1.1, we define the following

covering numbers:

(1) the covering number with respect to subgroups, σg(A);

(2) with respect to subsemigroups, σs(A);

(3) with respect to inverse subsemigroups, σi(A);

(4) with respect to submonoids, σm(A);

(5) with respect to monoidal subsemigroups, σ∗m(A).

We are ready to state our three main results characterizing the covering numbers of finite semi-

groups, finite inverse semigroups, and (not necessarily finite) monoids. The proofs are given in Sec-

tion 3, 4, and 5, respectively.

Theorem 1.4. Let S be a finite semigroup.

(1) If S is monogenic (generated by a single element), then σs(S) =∞.

(2) If S is a group, then σs(S) = σg(S).

(3) If S is neither monogenic nor a group, then σs(S) = 2.

In general, an arbitrary semigroup S may not be the union of finitely many subgroups. However,

semigroups which are the union of groups have been well studied (see [15]). We present an interesting

example.

Example 1.5. Let S = {a, b, 0} with a · a = a, b · b = b, and all other products equal 0. We see

σg(S) = 3, as {a}, {b}, and {0} are maximal subgroups of S. However, σs(S) = 2 as S = {a, 0}∪{b, 0}.

Generalizing this construction can produce semigroups with arbitrary covering numbers with respect

to groups. On the other hand, infinite groups which have no finite coverings by subgroups can have

finite coverings by semigroups.
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Example 1.6. Let Z be the group of integers under addition. Then σg(Z) =∞, since Z is monogenic

(with respect to group operations). However, σs(Z) = 2, since Z is the union of the positive integers

and the non-positive integers.

In our next theorem, we give a characterization of covering numbers of finite inverse semigroups.

Green’s relations and the principal factor J∗ of an equivalence class J are used in the statement

explicitly. For the details, we refer to Definition 2.1 and Definition 4.4.

Theorem 1.7. Let I be a finite inverse semigroup.

(1) If I is a group, then σi(I) = σg(I).

(2) If I is not generated by a single J -class, then σi(I) = 2.

(3) If I is not a group but is generated by a single J -class J , then J∗ is isomorphic to a Brandt

semigroup Bn(G), where n ≥ 2.

(a) If n = 2 and |G| = 1, then σi(I) =∞.

(b) If n = 2 and |G| > 1, then σi(I) = m + 1 where m is the minimum index of proper

subgroups of G.

(c) If n > 2, then σi(I) = 3.

In Proposition 4.11, we show that the value of m in the previous theorem can be any integer greater

than one except four. Thus, we obtain the following corollary.

Corollary 1.8. Let n ≥ 2. Then there exists an inverse semigroup I such that σi(I) = n.

We prove Corollary 1.8 in Section 4 by giving examples belonging to each case of Theorem 1.7.

Lastly, for monoids, we are able to drop the finiteness criterion. However, this characterization is

dependent on the covering number of semigroups with respect to semigroups, which is only known for

finite semigroups.

Theorem 1.9. Let M be a monoid.

(1) If M is a group, then σm(M) = σ∗m(M) = σs(M).

(2) If S = M − {1} is a non-empty semigroup, then σ∗m(M) ≤ σm(M) = σs(S) and σs(M) = 2.

(3) If M is neither a group nor is M − {1} a non-empty semigroup, then

σm(M) = σ∗m(M) = σs(M) = 2

The second case in Theorem 1.9 is the only case in which covering numbers with respect to sub-

monoids and monoidal subsemigroups can differ. We give a complete characterization of when σ∗m(M)

is strictly less than σm(M) in Section 5.

In our last section, Section 6, we present some open questions concerning covering numbers of

semigroups.
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2. Preliminaries

In this section, we present various concepts and theorems needed to establish our results on covering

numbers of semigroups, such as Green’s relations, Rees matrix semigroups, and Rees’s Theorem. All

of these definitions and results can be found in Howie’s 1995 monograph [9]. We will give explicit

references to [9] but recommend this book as an excellent source for proofs and further detail.

First, we define Green’s relations. Note that we define S1 as the semigroup S with an identity

adjoined if S does not have an identity, and merely S otherwise.

Definition 2.1. [9, Section 2.1] Let S be a semigroup and x, y ∈ S. Then

(1) xJ y if and only if S1xS1 = S1yS1;

(2) xRy if and only if xS1 = yS1;

(3) xLy if and only if S1x = S1y.

It can be easily seen that J , R, and L are equivalence relations. It is also useful to note that for

x, y ∈ S, we have xJ y if and only if there exist a, b, c, d ∈ S1 such that axb = y and cyd = x. Similar

descriptions of R and L also exist. See [9, Section 2.1] for more details.

Equivalence classes under the J , R, and L relations are called J -classes, R-classes, and L-classes,

respectively. Also, the J -class, R-class, and L-class containing the element x is denoted by Jx, Rx,

and Lx.

There is a natural partial order, ≤J , on the J -classes of S where, for

x, y ∈ S, we have Jx ≤J Jy if and only if S1xS1 ⊆ S1yS1. Similar partial orders on R- and L-

classes exist, where for x, y ∈ S, Rx ≤R Ry if and only if xS1 ⊆ yS1 and Lx ≤L Ly if and only if

S1x ⊆ S1y.

The following is a useful result describing where products of elements lie in the partial order on

Green’s classes.

Lemma 2.2. [9, Section 2.1] For all x, y ∈ S, Jxy ≤J Jx, Jxy ≤J Jy, Rxy ≤R Rx, and Lxy ≤L Ly.

Our investigations of covering numbers use several classification results for semigroups, namely Rees

matrix semigroups and Rees 0-matrix semigroups, which we describe now.

Definition 2.3. Let K and Λ be nonempty sets and let G be a group.

(1) Let P be a |Λ| × |K| matrix with entries in G. Then the Rees matrix semigroup

S =M[K,G,Λ;P ] is the set of triples K ×G× Λ with multiplication defined by

(κ, g, λ)(µ, h, ν) = (κ, gpλ,µh, ν).

(2) Let Q be a |Λ|×|K| matrix over G∪{0}. Then the Rees 0-matrix semigroup S =M0[K,G,Λ;Q]

is the set (K ×G× Λ) ∪ {0} with multiplication defined by

(κ, g, λ)(µ, h, ν) = (κ, gqλ,µh, ν)
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when qλ,µ 6= 0,

(κ, g, λ)(µ, h, ν) = 0

when qλ,µ = 0, and

0 · s = s · 0 = 0

for all s ∈ S. The matrix Q is called regular if each row and column contains a non-zero

element.

Rees’s Theorem [11] characterizes semigroups with certain J -class structures. To state the theorem,

we need a few more definitions.

Definition 2.4. [9, Section 3.2]

(1) A semigroup S is simple if S is comprised of a single J -class.

(2) A semigroup S with a zero, i.e. 0 · s = 0 = s · 0 for all s ∈ S, is 0-simple if S is a semigroup

with two J -classes, where one is the set {0} and S2 6= {0}.
(3) A semigroup S is completely simple or completely 0-simple if S is simple or 0-simple, re-

spectively, and every non-empty set of R-classes and every non-empty set of L-classes has a

minimal element.

Before stating Rees’s Theorem, we note that finite simple and 0-simple semigroups are completely

simple and completely 0-simple, respectively.

Theorem 2.5. [9, Theorem 3.2.3] A semigroup S is completely simple if and only if S is isomorphic

to a Rees matrix semigroup. Also, S is completely 0-simple if and only if S is isomorphic to a Rees

0-matrix semigroup with a regular matrix.

The final construction we have to mention is the principle factor. It is defined as follows.

Definition 2.6. [9, Section 3.1] Let S be a semigroup and J be a J -class of S. The principle factor

of J , denoted by J∗, of J is a semigroup with elements J ∪{0} and operation ∗ such that for s, t ∈ J∗,
we have s ∗ t = st when s, t, st ∈ J and s ∗ t = 0 otherwise.

Essentially, products in J∗ are the same as they are in J , but are set equal to 0 when the product

lies outside of J . Furthermore, the following property of J∗ is of interest in our investigations. When J

is a maximal J -class of a semigroup S that is not simple, there is a natural surjective homomorphism

φ : S → J∗ where (s)φ = s when s ∈ J and (s)φ = 0 otherwise

We conclude our list of preparatory results with a theorem characterizing principal factors. We

note that a null semigroup is a semigroup with a 0 such that every product is 0.

Theorem 2.7. [9, Theorem 3.1.6] Let S be a semigroup and J be a J -class of S. Then J∗ is 0-simple

or null.
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3. Covering finite semigroups

In this section, we give a proof of Theorem 1.4. First we prove various lemmas, before presenting

a cohesive proof at the end of the section.

We begin with the following observation about torsion groups.

Lemma 3.1. If S is a torsion group, then σs(S) = σg(S).

Proof. Clearly, every subgroup of S is also a subsemigroup. Let T be a subsemigroup of S and let

x ∈ T . Since S is torsion, there exists an n ∈ N such that xn = 1 and xn−1 = x−1. Note that T is

closed under multiplication and therefore T contains the identity and x−1. We see T is a group. Thus

subsemigroups of S are also subgroups of S, and we conclude σs(S) = σg(G). �

The following corollary is an immediate consequence.

Corollary 3.2. If S is a finite group, then σs(S) = σg(S).

The J -class structure of semigroups allows us to find proper subsemigroups. The methods used to

construct these proper subsemigroups were inspired by a 1968 paper by Graham et al. [8], in which

the maximal proper subsemigroups of an arbitrary finite semigroup are characterized. To state these

results, recall that an ideal of a semigroup S is a subset A ⊆ S such that AS ⊆ A and SA ⊆ A. Note

that every ideal is also a subsemigroup.

Lemma 3.3. Let S be a semigroup and let J be a maximal J -class of S under the partial order. Then

the set difference S − J is an ideal, and hence a semigroup, provided S − J 6= ∅.

Proof. Let x ∈ S − J and y ∈ S. Since x 6∈ J , we have J 6≤J Jx. If xy ∈ J , then J = Jxy ≤J Jx,

which is a contradiction. Thus xy ∈ S − J . This is similar for yx ∈ S − J and we conclude S − J is

an ideal and a semigroup. �

Corollary 3.4. Let S be a semigroup with a maximal J -class J such that 〈J〉 6= S. Then σs(S) = 2.

Proof. We have S = (S − J) ∪ 〈J〉 and if 〈J〉 6= S, then S − J is non-empty. �

Now consider a finite semigroup S. We see that S will have at least one maximal J -class, J .

Corollary 3.4 says that σs(S) = 2 unless 〈J〉 = S. This leaves two cases: when J = S and when

〈J〉 = S but J 6= S.

Beginning with the case when J = S, recall that Rees’s Theorem states that when S is a finite

semigroup with a single J -class, S is isomorphic to a Rees matrix semigroup.

Lemma 3.5. Let S = M[K,G,Λ;P ] be a Rees matrix semigroup. If |K| > 1 or |Λ| > 1, then

σs(S) = 2. If |K| = 1 and |Λ| = 1, then S is a group.
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Proof. First, consider the case when |K| > 1. Let κ ∈ K and consider the subset T = {κ} ×G×Λ of

S. For (κ, g, λ), (κ, h, µ) ∈ T , we have

(κ, g, λ)(κ, h, µ) = (κ, gpλ,κh, µ) ∈ T,

so T is a proper subsemigroup of S. Next, consider the complement of T in S, i.e. the set S − T ,

where u ∈ S−T whenever u = (ν, g, λ) with ν 6= κ. Obviously, for u, u′ ∈ S−T , we have uu′ ∈ S−T .

Thus S − T is a subsemigroup of S. We conclude S = T ∪ (S − T ) and σs(S) = 2.

The case when |Λ| > 1 is handled similarly.

Lastly, we consider the case when |K| = |Λ| = 1. Let S = {κ} ×G× {λ} and P = [g] where g ∈ G.

Through direct calculation, we see that the element (κ, g−1, λ) is an identity in S and the element

(κ, g−1h−1g−1, λ) is the inverse of (κ, h, λ). Therefore S is a group. �

We now consider the second case, where the semigroup S has a maximal J -class J that generates

S but J 6= S. Let J∗ be the principal factor of J (see Definition 2.6). Recall that we have a surjection

S → J∗ and that the principal factor J∗ is either null or 0-simple by Theorem 2.7. Furthermore,

applying Theorem 2.5, we obtain that J∗ is null or isomorphic to a Rees 0-matrix semigroup with a

regular matrix. We first consider the case that S is a Rees 0-matrix semigroup.

Lemma 3.6. Let S = M0[K,G,Λ;P ] be a Rees 0-matrix semigroup with a regular matrix P . Then

σs(S) = 2.

Proof. If |K| > 1, then let κ ∈ K and we see R = ({κ} × G × Λ) ∪ {0} is a proper subsemigroup of

S, using a similar argument as in the proof of Lemma 3.5. Similiarly, we see (S −R)∪ {0} is another

proper subsemigroup of S. Thus S = R ∪ ((S − R) ∪ {0}) and hence σs(S) = 2. When |Λ| > 1, the

same technique applies.

Now consider the case when |K| = |Λ| = 1. The single entry in the matrix P must be an element

of G and therefore K ×G×Λ is a proper subsemigroup of S. Since {0} is also a proper subsemigroup

of S, we have σs(S) = 2 �

By taking preimages using the surjection φ : S → J∗, the following is clear.

Corollary 3.7. Let S be a semigroup with a J -class J such that S = 〈J〉. If S 6= J and J∗ is

isomorphic to a regular Rees 0-matrix semigroup, then σs(S) = 2.

It remains to consider the case when J∗ is null.

Lemma 3.8. Let S be a semigroup with a J -class J such that S = 〈J〉. If S 6= J and J∗ is null, then

S is monogenic and σs(S) =∞.

Proof. We will show that |J | = 1. Let x, y ∈ J . Then there exist elements a, b ∈ S1 such that axb = y.

Assume for contradiction that a 6= 1 or b 6= 1. Since J generates S, at least one of a or b is a product

of elements in J . However, J∗ is null, meaning that the product of elements from J is not contained
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in J , i.e. a 6∈ J or b 6∈ J . This shows that axb 6∈ J and thus axb 6= y. This is a contradiction, and

therefore a = 1 and b = 1. We conclude that x = y and |J | = 1. Therefore S is monogenic and

σs(S) =∞. �

We now present the proof of Theorem 1.4, using the above lemmas and corollaries.

Proof of Theorem 1.4. Let S be a finite semigroup. If S is not generated by a single J -class, then

σs(S) = 2 by Corollary 3.4. If S is generated by a single J -class J , there are two cases to consider:

when S = J and when S 6= J .

In the case that S = J , we see S is a Rees matrix semigroup. Using Corollary 3.2 and Lemma 3.5,

either S is a group and σs(S) = σg(S), or otherwise σs(S) = 2.

Lastly, in the case that S 6= J , then S surjects onto J∗, which is either a Rees 0-matrix semigroup

or a null semigroup. Corollary 3.7 and Lemma 3.8 imply that σs(S) = 2 when J∗ is a Rees 0-matrix

semigroup or σs(S) =∞ when J∗ is null, since S is monogenic. �

4. Covering Finite Inverse Semigroups

In this section, we give a proof of Theorem 1.7, which deals with covering numbers of finite in-

verse semigroups, as given in Definition 1.1. Several important facts about inverse semigroups are

summarized in the following lemma. For further details, we refer to [9, Chapter 5].

Lemma 4.1. Let I be an inverse semigroup. Then aJ a−1, (a−1)−1 = a, and (ab)−1 = b−1a−1 for all

a, b ∈ I.

Our proof of Theorem 1.7 splits into three cases: when I is a group, when I is not generated by

a single J -class, and otherwise. The first two cases are very easy and follow along the line of the

proofs in Section 3. By Lemma 3.1, the case when a finite inverse semigroup is a group is clear. In the

case that I is not generated by a single J -class, the same technique of Lemma 3.3 applies to inverse

semigroups, taking the set difference with a maximal J -class.

Lemma 4.2. Let I be a finite inverse semigroup and J be a maximal J -class of I. If I 6= J , then

I − J is an inverse subsemigroup of I.

Proof. Note that I−J is a union of J -classes, specifically every J -class except J . Lemma 3.3 implies

I−J is a semigroup and Lemma 4.1 then implies I−J contains the inverse of each of its elements. �

Similar to Corollary 3.4 for finite semigroups, we have an analogue for finite inverse semigroups.

Corollary 4.3. Let I be a finite inverse semigroup and J be a maximal J -class of I. If 〈J〉 6= I, then

σi(I) = 2.

Proof. By Lemma 4.2 and noting I 6= J , we have that I−J is a proper inverse subsemigroup of I. Also,

〈J〉 is an inverse subsemigroup, since for all a1, a2, . . . , ak ∈ J , we have
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(ak · · · a2a1)−1 = a−1k · · · a
−1
2 a−11 ∈ 〈J〉 by Lemma 4.1. Since 〈J〉 6= I, we have I = (I − J) ∪ 〈J〉

and hence σi(I) = 2. �

We now consider when I is generated by a single J -class J . By Rees’s Theorem, if I = J , then

I is a Rees matrix semigroup and J∗ is a Rees 0-matrix semigroup. Inverse Rees 0-matrices have a

specific structure and are known as Brandt semigroups, which we define below. See [9, Chapter 5] for

more details.

Definition 4.4. For a group G and integer n ≥ 1, the Brandt semigroup Bn(G) is a Rees 0-matrix

semigroup M0[K,G,K;P ], where |K| = n and P satisfies pκ,κ = e, the identity of G, for all κ and

pκ,λ = 0 otherwise.

For convenience, define n = {1, 2, . . . , n}, which we use in place of K. Throughout this section, we

will use e to represent the identity of G. Also note that the idempotents of Bn(G) are of the form

(κ, e, κ).

Theorem 4.5. [9, Exercise 5.4] For a J -class J of an inverse semigroup I, the principal factor J∗ is

isomorphic to a Brandt semigroup.

We now consider the covering numbers of Brandt semigroups to understand inverse semigroups

generated by a single J -class.

Lemma 4.6. Let I be a finite inverse Rees matrix semigroup. Then I is a group and σi(I) = σg(I).

Proof. By Theorem 4.5 and noting I is a single J class, we have I∗ isomorphic to a Brandt semigroup.

Furthermore, since I is closed under multiplication, I∗ ∼= B1(G) for some G. The semigroup B1(G) is

a group with a zero adjoined, implying that I is in fact a group and σi(I) = σg(I). �

Lemma 4.7. Let I be a finite inverse semigroup with maximal J -class J such that 〈J〉 = I and

〈J〉 6= J . Then J∗ is isomorphic to a Brandt semigroup Bn(G) for some n ≥ 2.

Proof. By Theorem 4.5, we see J∗ is isomorphic to a Brandt semigroup Bn(G). However, if n = 1,

then every product of elements from J would also be in J , which is a contradiction since 〈J〉 = I and

〈J〉 6= J . Therefore n ≥ 2. �

In this case, where I is generated by a single J -class but is not equal to a single J -class, the

following lemma shows that I is not the union of two proper inverse subsemigroups.

Proposition 4.8. Let I = Bn(G) be a finite Brandt semigroup, where n ≥ 2. Then σi(I) 6= 2.

Proof. Let H be a proper inverse subsemigroup of I = Bn(G) with n ≥ 2, and Hc be the complement

of H in I. We will prove σi(I) 6= 2 by showing that 〈Hc〉 = I. This is because if I = H ∪K for some

inverse subsemigroup K ⊆ I, then Hc ⊆ K, and K is not a proper subsemigroup if 〈Hc〉 = I.

We will prove that 〈Hc〉 = I in three cases:
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(1) H does not contain every non-zero idempotent of I;

(2) H contains every non-zero idempotent of I and the non-zero idempotents are not all JH -

related;

(3) H contains every non-zero idempotent of I and each non-zero idempotent is JH -related.

Note that each non-zero idempotent of I is of the form (κ, e, κ) for some κ ∈ K.

(1) Let κ ∈ n such that (κ, e, κ) 6∈ H. Also let λ, µ ∈ n and g ∈ G so that (λ, g, µ) ∈ I. We

first show that (κ, g, µ) 6∈ H via contradiction. Suppose (κ, g, µ) ∈ H. Since H is an inverse

semigroup, we have (κ, g, µ)−1 ∈ H with (κ, g, µ)−1 = (µ, g−1, κ). Furthermore,

(κ, g, µ)(µ, g−1, κ) = (κ, e, κ)

which contradicts the fact that H is closed. By a similar argument, (λ, e, κ) 6∈ H. Therefore

(λ, e, κ)(κ, g, µ) = (λ, g, µ) ∈ 〈Hc〉,

and hence, we have 〈Hc〉 = I.

(2) Let λ, µ ∈ n and g ∈ G. First, we consider the subcase when (λ, e, λ) and (µ, e, µ) are not JH -

related. We claim this implies (λ, g, µ) 6∈ H. Suppose to the contrary that (λ, g, µ) ∈ H. Since

H is an inverse semigroup, we have (λ, g, µ)−1 ∈ H with (λ, g, µ)−1 = (µ, g−1, λ). Furthermore,

(λ, g, µ)(µ, e, µ)(µ, g−1, λ) = (λ, e, λ)

and

(µ, g−1, λ)(λ, e, λ)(λ, g, µ) = (µ, e, µ),

which contradicts the fact that (λ, e, λ) is not JH -related to (µ, e, µ). Therefore (λ, g, µ) ∈ Hc.

Now suppose that (λ, e, λ) is JH -related to (µ, e, µ). By assumption, this implies that there

exists a κ ∈ K such that (κ, e, κ) is neither JH -related to (λ, e, λ) nor to (µ, e, µ). By the

previous arguments, this implies (λ, g, κ) ∈ Hc and (κ, e, µ) ∈ Hc. Therefore

(λ, g, κ)(κ, e, µ) = (λ, g, µ) ∈ 〈Hc〉.

We have shown 〈Hc〉 = I in this case.

(3) In this case, we first show that H is isomorphic to a Brandt semigroup itself. Consider an

element (λ, g, κ) ∈ H. Since H is an inverse semigroup, we have (λ, g, κ)−1 = (κ, g−1, λ) ∈ H.

We also see

(λ, g, κ)(κ, g−1, λ) = (λ, e, λ)

and that

(λ, e, λ)(λ, g, κ) = (λ, g, κ),

and therefore every element of H is JH -related to an idempotent. This implies all non-zero

elements of H are JH -related and thus H is isomorphic to Brandt semigroup Bn(K) for some

K � G.
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We see that H ∩
(
{κ} ×G× {κ}

)
is a group isomorphic to K. This implies 〈Hc〉 contains

{κ} ×G × {κ}, since {κ} ×G × {κ} ∼= G is not the union of two groups. Furthermore, since

|K| < |G|, for every κ, λ, there exists a g ∈ G such that (λ, g, κ) ∈ Hc. This implies

(λ, g, κ)
(
{κ} ×G× {κ}

)
= {λ} ×G× {κ} ⊆ 〈Hc〉,

and hence, we have 〈Hc〉 = I.

�

We now separate Brandt semigroups Bn(G) into two cases, namely when n ≤ 3 and when n = 2.

We first consider the case n ≥ 3, which is much simpler.

Proposition 4.9. Let I = Bn(G) be a finite Brandt semigroup, where n ≥ 3. Then σi(I) = 3.

Proof. Let κ1, κ2, κ3 ∈ n be distinct integers. Define

Hj = ((n− {κj})×G× (n− {κj})) ∪ {0}

for j = 1, 2, 3. It is clear that Hj is a subsemigroup of I, since no product of elements in Hj will

contain κj in its tuple. Also, Hj is an inverse subsemigroup, since the inverse of an element without

κj in its tuple also does not have κj in its tuple. Therefore σi(I) = 3, because I =
⋃
Hj and σi(I) 6= 2

by Proposition 4.8. �

Proposition 4.10. Let I = B2(G) be a finite Brandt semigroup. If |G| = 1, then σi(I) = ∞.

Otherwise, if |G| > 1, then σi(I) = n+ 1, where n is the minimum index of proper subgroups of G.

Proof. We first consider the case when |G| = 1. Let x = (1, e, 2). Then x−1 = (2, e, 1),

xx−1 = (1, e, 1), x−1x = (2, e, 2), and xx = 0. Therefore I is monogenic, with respect to inverse

semigroup operations, and σi(I) =∞.

We now consider the case when |G| > 1. Let n be the minimum index of proper subgroups of G.

Also let {H1, . . . ,Hm} be a covering of I by m proper inverse subsemigroups. Consider

T κ,λi = Hi ∩ ({κ} ×G× {λ})

for each i ≤ m and κ, λ ∈ {1, 2}.
Without loss of generality, assume T 1,2

i 6= ∅. We first show |T 1,2
i | ≤ |G|/n, before describing the

elements of T 1,2
i more explicitly. We see that T 1,2

i T 2,1
i ⊆ T 1,1

i and T 1,1
i T 1,2

i ⊆ T 1,2
i . This implies

|T 1,1
i | = |T 1,2

i |. If T 1,2
i = {1} × G × {2}, then |T κ,λi | = |G| for each κ and λ. This is a contradiction

as Hi is a proper inverse subsemigroup, and thus |T 1,2
i | < |G|. Furthermore, T 1,1

i is a subgroup of

{1}×G×{1}. Since {1}×G×{1} is isomorphic to G and |T 1,2
i | < |G|, we have |T 1,2

i | ≤ |G|/n. Here,

we may immediately conclude m ≥ n, since {Hi, . . . ,Hm} must cover {1} ×G× {2}.
Now suppose T 1,2

i = {1} × Ai × {2} for some Ai ⊆ G. Since T 1,1
i is a subgroup of {1} × G × {1},

we have T 1,1
i = {1} × Bi × {1} for some subgroup Bi of G. We see that T 1,1

i T 1,2
i = T 1,2

i , implying
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BiAi = Ai and |Bi| = |Ai|. Therefore Ai must be a coset of Bi. We may now conclude m > n, since

there do not exist n proper subgroups of G that cover G but {H1, . . . ,Hm} must cover {1}×G×{1}.
Finally, we give a cover of I using n+ 1 proper inverse subsemigroups. Let B be a subgroup of G

of index n, and let g1, . . . , gn be coset representatives of B. For i ≤ n define

Hi = ({1} ×B × {1}) ∪ Li,1 ∪ Li,2 ∪ Li,3 ∪ {0}

where Li,1 = ({1} × Bgi × {2}), Li,2 = ({2} × g−1i B × {1}), and Li,3 = ({2} × g−1i Bgi × {2}). Also

define

Hn+1 = ({1} ×G× {1}) ∪ ({2} ×G× {2}) ∪ {0}.

It is routine to check that Hi is an inverse subsemigroup of I. Also define

Hn+1 = ({1} ×G× {1}) ∪ {2} ×G× {2} ∪ {0}.

Similarly, Hn+1 is an inverse subsemigroup of I and {H1, . . . ,Hn+1} forms a covering of I. We conclude

σi(I) = n+ 1. �

We now present the proof of Theorem 1.7.

Proof of Theorem 1.7. Let I be a finite inverse semigroup. If I is not generated by a single J -class,

then σi(I) = 2 by Corollary 4.3. If I is generated by a single J -class J , then there are two cases to

consider: when J = I and when J 6= I.

When J = I, we see that I is a Rees matrix semigroup using Theorem 2.5. Lemma 4.6 then implies

I is a group with σi(I) = σg(I).

When J 6= I but 〈J〉 = I, we see I surjects onto J∗ and J∗ is isomorphic to a Brandt semigroup

Bn(G) with n ≥ 2, by Lemma 4.7. Using Propositions 4.8 and 4.9, we see that when n ≥ 3, we have

σi(J
∗) = 3. Furthermore, with Proposition 4.10, when n = 2, either σi(J

∗) = ∞, when |G| = 1, or

m + 1 otherwise, where m is the minimum index of proper subgroups of G. Taking preimages, we

recover the theorem. �

It is natural to ask which values of m in Theorem 1.7 are possible, i.e. what integers appear as the

minimum index of a proper subgroup.

Proposition 4.11. Let n ≥ 2. There exists a group G such that the minimum index of a proper

subgroup of G is m if and only if m 6= 4.

Proof. First, let m be prime. The only proper subgroup of Cm, the cyclic group of order m, is the

trivial group, which has index m. This implies every prime number, including two and three, can be

found as the minimum index of proper subgroup.

Next, let m ≥ 5 and consider Am, the alternating group on m points. We see that Am has a

subgroup of index m, namely Am−1. Assume to the contrary that Am has a proper subgroup H of

index k < m. This implies that there is a homomorphism from Am into Sk, from the action of Am

on the cosets of H. This homomorphism is trivial since Am is simple, contradicting the fact that the
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induced action is transitive. We conclude the minimum index of a proper subgroup of Am is m. This

shows that every m ≥ 5 can be found as the minimum index of proper subgroup.

It remains to be shown that there are no groups where the minimal index of a proper subgroup is

four. Suppose that G is a finite group with a subgroup H of index 4. This implies the existence of a

homomorphism from Φ : G → S4, using the transitive action of G on the cosets of H. Since (G)Φ is

transitive, (G)Φ is one of the following, modulo conjugation:

S4, A4, D8 = 〈(1 2 3 4), (1 3)〉, V4 = 〈(1 2)(3 4), (1 3)(2 4)〉, C4 = 〈(1 2 3 4)〉.

Every of these transitive subgroups of S4 has some subgroup K of index 2 or 3, and we see that

(K)Φ−1 is a subgroup of G of index 2 or 3 as well. This shows that 4 is never the minimum index of

a proper subgroup of G. �

We conclude this section with a proof of Corollary 1.8, giving explicit examples of inverse semigroups

belonging to each case in Theorem 1.7.

Proof of Corollary 1.8. Let n ≥ 1 and X be an n-element set. The symmetric inverse monoid In is

the semigroup of partial one-to-one functions from X to X, i.e. the set of partial functions that are

injective on their domain. We see In is an inverse semigroup belonging to Case (2) of Theorem 1.7

with σi(In) = 2, since In is the union of the set of bijections and the set of non-bijections.

Let the inverse subsemigroup of In comprised of non-bijective elements be denoted by S. It is

shown in [7, Section 3] that S is generated by a single J -class, namely the J -class J consisting of

partial functions that are not defined on a single element. This shows S belongs to the third case of

Theorem 1.7. The principal factor, J∗, is isomorphic to Bn(Sn−1), where Sn−1 is the symmetric group

on n points. Thus, provided n ≥ 3, we see that σi(S) = 3.

The groups S3 and A4 satisfy σi(S3) = σg(S3) = 4 and σi(A4) = σg(A4) = 5.

Now let n ≥ 5. By Proposition 4.11, the semigroup B2(An) belongs to subcase (a) of Theorem 1.7

and satisfies σi
(
B2(An)

)
= n+ 1. �

5. Covering Monoids

In this section, we give a proof of Theorem 1.9, which deals with covering numbers of monoids with

respect to subsemigroups, submonoids, and monoidal subsemigroups. The following lemma describes

the relationship between these covering numbers. This result is clear since every submonoid of M is

also a monoidal subsemigroup of M and every monoidal subsemigroup of M is a subsemigroup of M .

Lemma 5.1. Let M be a monoid. Then σs(M) ≤ σ∗m(M) ≤ σm(M).

Let M be a monoid. Recall that R1 and L1 denote the R-classes and L-classes of M containing

1 respectively, see Definition 2.1. Our proof of Theorem 1.9 considers three cases for the monoid M :

when the complement of R1 in M is empty, when M −R1 is not empty and R1 contains a non-identity
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element, and lastly, when M − R1 is not empty but R1 = {1}. The following four lemmas address

these cases.

Lemma 5.2. If M −R1 = ∅, then M is a group and σm(M) = σ∗m(M) = σs(M).

Proof. Let f ∈ R1. Then there exists g ∈ M such that fg = 1. Notice that g ∈ R1 also, so there

exists h ∈M such that gh = 1. We see that f = fgh = h and therefore g is a two-sided inverse of f .

This implies M is a group.

Suppose that σs(M) = n for some integer n ≥ 2. Then there exists a set {S1, . . . , Sn} of proper

subsemigroups of M such that
⋃
Si = M . We claim that Si ∪ {1} is a proper submonoid of M . It is

clear that Si∪{1} is a submonoid of M . Suppose that Si∪{1} is not a proper subset of M . Therefore

Si = M − {1}. However, since M is a group, M − {1} is not a closed subset of M (unless M = {1},
in which case Si = ∅ and we achieve a contradiction). This shows Si ∪ {1} is a proper submonoid of

M . We conclude that {S1 ∪ {1}, . . . , Sn ∪ {1}} is a set of proper submonoids whose union is M and

thus σm(M) ≤ σs(M). Using Lemma 5.1, we conclude σs(M) = σ∗m(M) = σm(M). �

The following lemma appears in [4, Section 2], and we include it here with proof for completeness.

Lemma 5.3. If M −R1 6= ∅, then σs(M) = 2

Proof. Let f, g ∈ R1. Then there exist hf , hg ∈ M such that fhf = 1 and ghg = 1. We see that

fghghf = 1, so fg ∈ R1. We conclude that R1 is a submonoid of M .

Now let f, g ∈M −R1. Note that 1 6∈ fS1 and 1 6∈ gS1 since f and g are not R-related to 1. Also,

we can see that fgS1 ⊆ fS1 and therefore fgh 6= 1 for all h ∈M . This shows fg is not R-related to

1 and M −R1 is a semigroup. Therefore σs(M) = 2, since M = R1 ∪ (M −R1). �

Lemma 5.4. If M −R1 6= ∅ and R1 6= {1}, then σm(M) = σ∗m(M) = 2.

Proof. Since R1 6= {1}, the class R1 contains a non-identity element. This implies that (M−R1)∪{1}
is a proper submonoid of M . Therefore M = R1∪ ((M −R1)∪{1}), recalling R1 is a submonoid from

the proof of Lemma 5.3 and σm(M) = σ∗m(M) = 2. �

Lemma 5.5. If M −R1 6= ∅ and R1 = {1}, then σ∗m(M) ≤ σm(M) = σs(M − {1}).

Proof. Let S = M−{1}, which is a semigroup by the proof of Lemma 5.3. Suppose that σs(S) = n for

some n ∈ N. Then there exists a set {S1, . . . , Sn} of proper subsemigroups of S such that
⋃
Si = S.

Consider the set {S1 ∪ {1}, . . . , Sn ∪ {1}} of proper submonoids of M . We see that
⋃

(Si ∪ {1}) = M ,

so σ∗m(M) ≤ σm(M) ≤ σs(S).

Now suppose that σm(M) = n for some n ∈ N. Then there exists a set {M1, . . . ,Mn} of proper sub-

monoids of M such that
⋃
Mi = M . Note that 1 ∈ Mi for each i. Consider the set

{M1 − {1}, . . . ,Mn − {1}} of subsets of S. It is clear that for each i, Mi − {1} is a proper sub-

semigroup of S and
⋃

(Mi − {1}) = S, so σs(S) ≤ σm(M). We conclude σs(S) = σm(M). �
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We combine the previous three lemmas to complete the proof of Theorem 1.9.

Proof of Theorem 1.9. Let M be a monoid. First, if M − R1 = ∅, then M is a group and

σm(M) = σ∗m(M) = σs(M) by Lemma 5.2. Next, if M − R1 6= ∅ and R1 6= {1}, then

σm(M) = σ∗m(M) = σs(M) = 2 by Lemma 5.3 and Lemma 5.4. Lastly, when M − R1 6= ∅ and

R1 = {1}, then M is a semigroup with an identity adjoined. In this case, using Lemma 5.3 and

Lemma 5.5 and letting S = M − {1}, we have σ∗m(M) ≤ σm(M) = σs(S) and σs(M) = 2. �

As a corollary of Theorem 1.9 (or simply of Lemma 5.3), we see that the covering number of a

monoid M with respect to semigroups is always two, except possibly when M is a group. Note that

this applies to infinite monoids as well.

Corollary 5.6. Let M be a monoid such that M is not a group. Then σs(M) = 2.

Combining Theorem 1.4 and Theorem 1.9 allows us to give the following more precise characteri-

zation of covering numbers of finite monoids.

Corollary 5.7. Let M be a finite monoid.

(1) If M is a group, then σm(M) = σ∗m(M) = σs(M) = σg(M).

(2) If S = M − {1} is a group, then σ∗m(M) = 2 = σs(M) and σm(M) = σg(S).

(3) If S = M − {1} is a monogenic semigroup that is not a group, then σ∗m(M) = σm(M) = ∞
and σs(M) = 2.

(4) Otherwise, σm(M) = σ∗m(M) = σs(M) = 2.

To conclude this section, we observe that in one particular case, the covering number of a monoid

with repsect to submonoids and monoidal subsemigroups may differ. We give a complete characteri-

zation of when this case occurs.

Proposition 5.8. We have σ∗m(M) < σm(M) if and only if M −{1} is a group and σs(M −{1}) > 2.

Also, σ∗m(M) < σm(M) implies σ∗m(M) = 2.

Proof. Suppose that σ∗m(M) < σm(M). By Lemmas 5.2 and 5.4, we see that we must have M −
R1 6= ∅ and R1 = {1}. Also suppose that σ∗m(M) = n for some n ∈ N. Then there exists a

set {M1, . . . ,Mn} of proper monoidal subsemigroups of M such that
⋃
Mi = M . Consider the set

{M1 ∪ {1}, . . . ,Mn ∪ {1}} of subsets of M . It is clear that Mi ∪ {1} is a submonoid of M for each i,

and
⋃

(Mi ∪ {1}) = M . However, since σ∗m(M) < σm(M), there must exist an i such that Mi ∪ {1}
is not proper in M , i.e. Mi = M − {1}. This shows that M − {1} is a monoidal subsemigroup of M .

We now see that σ∗m(M) = 2, since M = (M − {1}) ∪ {1}. We conclude σs(M − {1}) = σm(M) > 2

and that M − {1} is a group, using Lemma 5.5 and Corollary 5.6.

The reverse direction is clear, because σ∗m(M) = 2 and σm(M) > 2. �

As a remark, for finite monoidsM , we can drop the condition in Proposition 5.8 that σs(M−{1}) > 2

since for every finite group G, σs(G) > 2. However, some infinite groups have covering number with
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respect to semigroups equal to two, such as Z under addition, so the requirement that σs(M−{1}) > 2

in the previous lemma is necessary for infinite monoids, even when M − {1} is a group.

6. Open Questions

Although we have given a complete characterization of covering numbers of finite semigroups and

finite inverse subsemigroups, the infinite case is largely unsolved. Some methods in this paper can be

extended to the infinite case, with obvious complications. For instance, an infinite semigroup needs

not have a maximal J -class, preventing the use of Lemma 3.3. Also, infinite simple and 0-simple semi-

groups may not be completely simple or completely 0-simple, so Rees’s Theorem has limited usefulness.

Question 1 What is σs(S) for an infinite semigroup S?

Question 2 What is σi(I) for an infinite inverse semigroup I?

The covering number of groups with respect to semigroups is addressed in [2], where the first author

characterizes which groups have semigroup covering number equal to two (such as Z). Specifically, it is

shown that for a group G, we have σs(G) = 2 if and only if G has a non-trivial left-orderable quotient.

Since covering numbers with respect to semigroups and groups are equivalent for finite groups, for

every n that is a group covering number, there exists a semigroup S such that σs(S) = n. However,

not every integer is a group covering number, for instance 7 and 11, as mentioned in the introduction

and discussed in [6]. This leads to the following question.

Question 3 Does there exist a semigroup S such that σs(S) = 7 or any other integer greater than

two that is not a group covering number?
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