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ABSTRACT. In this paper we introduce the construction of free profinite products of profinite groups
with commuting subgroups. We study a particular case: the proper free profinite products of profinite
groups with commuting subgroups. We prove some conditions for a free profinite product of profinite
groups with commuting subgroups to be proper. We derive some consequences. We also compute

profinite completions of free products of (abstract) groups with commuting subgroups.

1. Introduction

Profinite groups are known since 1965 when J. P. Serre introduced them in his book “Cohomologie
Galoisienne” [IR]. A profinite group G is the inverse limit of a projective system of finite groups

Le. G = limG;, where (Gi)ier is a projective system of finite (abstract) groups, I is a directed set.
el
A profinite group G is isomorphic to a closed subgroup of a direct product of finite groups. So,

profinite groups are very large. They are very rich since they have algebraic and topological properties.
A profinite group is a topological, compact, haussdorff and totally disconnected group. A concrete
example of a profinite group is the profinite completion of an abstract group. Given G an abstract
group, the profinite completion G of group G is the inverse limit of the projective system (G/N)nen
of the (finite) quotient groups G/N, where N is the collection of all normal subgroups of finite index

of Gie. G= lim G /N. Profinite groups are “almost finite”, they behave like infinite groups and they
eEN
can inherit some properties of the finite groups on which they are built.
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In [9], free constructions (free products, amalgamated free products, HNN-extensions and free prod-
ucts with commuting subgroups) of abstract groups were defined. Many properties amongst which
residual finiteness were investigated on these constructions. Since Baumslag’s study on the residual
proved some conditions for the residual finiteness of some free constructions of abstract groups. Residual
finiteness and profiniteness are linked. Indeed, a profinite group is residually finite and any residually
finite group naturally injects in its profinite completion. Many authors have studied profinite groups
in different directions [3, I3, 4, I, 20]. Luis Ribes and Pavel Zalesskii in [IA] have introduced free
constructions of profinite groups. They defined free profinite products, amalgamated free profinite
products and profinite HNN-extensions of profinite groups. They studied the particular cases of proper
amalgamated free profinite products and proper profinite HNN-extensions of profinite groups. They
gave examples of amalgamated free profinite product which are not proper and proved some conditions
for their properness I3, 14].

In this paper, we carry similar study for the free profinite products of profinite groups with commu-

ting subgroups. We define this construction here and we denote by A [[ B the free profinite product
(H,K]
of profinite groups A and B with commuting subgroups H and K, where A and B are two profinite

groups, and H is a closed subgroup of the profinite group A and K is a closed subgroup of the profinite

group B. It is proper if the continuous homomorphisms A —+ A [[ B and B — A [][ B are injective.
[H,K] [H,K]
We give an example of non proper free profinite product of profinite groups with commuting subgroups.

We prove some conditions for its properness. We obtain:

Theorem 1.1. Let Gy and Gy be two profinite groups. Let Hi be a closed subgroup of the profinite

group G1 and let Ha be a closed subgroup of the profinite group Ga. Let G = G [] G2 be the
[H1,H2]
free profinite product of profinite groups G1 and Go with commuting subgroups Hy and Hy. Then the

following conditions are equivalent:

a. The natural homomorphism 0 : G1  * Go — G1 ] G2 is injective;
[H1,H2] [H1,H>)]
b. G=G1 [] Gs is proper;
[H1,Hz]
c. There ezists an indexing set A such that for each i = 1,2, there is a familly U; = {U;» : A € A}

of open normal subgroups of finite index of G; with the following properties:
(1) The families Uy and Us are filtrations and
(2) For each A € A, Uy and Usy are [Hi, Ha|-compatible.

We then derive this consequence.

Corollary 1.2. Let G be a profinite group. Let Hy and Ho be two closed subgroups of G. Let G1 and
Go be two copies of G. Then the free profinite product of profinite groups G1 and Go with commuting
subgroups Hy and Hs is proper.

Moreover, profinite completions of abstract groups are profinite. It is very interesting and usual to

compute profinite completions of abstract groups. L. Ribes and P. A. Zalesskii in [[5] proved how to
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compute the profinite completions of some free constructions of abstract groups. They showed that
AxB = A\]_[E i.e. the profinite completion of the free product of the abstract groups A and B is
the free profinite product of the profinite completions A and B of each of these groups. Under some

conditions, they also showed that A/Ia;\B = ﬁ]_[ﬁ i.e. the profinite completion of the amalgamted free
H

product of the abstract groups A and B over a common subgroup H is the amalgamated profinite
product of the profinite completions A and B of each of these groups over the profinite completion H of
the common subgroup H. We here compute the profinite completion of some free products of abstract

groups with commuting subgroups. We prove:

Theorem 1.3. Let A and B be abstract groups and let H < A and K < B such that the following two

conditions are satisfied:
a. The profinite topology on A [H,,(K] B induces the profinite topologies on A, B, H, K and [H, K].
b. There exist an indexing set A and the families Uy = {Uax: A € A} and Up = {Upy : A € A}
of normal subgroups of finite index of A and B respectively, such that Us and Up are filtrations
and for every A € A, Uay and Upy are [H, K]-compatible.

Then A x B=A 11 B.
H.K]| (,R]

Finally, one can easily observe that, under the above conditions a. and b. in theorem I3, A 11 B ,
1 ,K]
the free profinite product of the profinite groups A and B with commuting subgroups H and K, is

proper.

2. Preliminaries

Through out this work, an abstract group is a group with the usual group structure. If G is a profinite

group, we will also denote by G the underlying abstract group without the topological structure.

2.1. Free products of abstract groups with commuting subgroups. Let A and B be abstract
groups and let H < A and K < B such that H is isomorphic to K through the isomorphism ¢ : H — K.
We denote by A HfK B the free product of groups A and B amalgamating subgroups H and K via the

%)
isomorphism . This group is generated by the disjoint union of all the generators of groups A and B,

and defined by all the relators of groups A and B, together with all the relations of the form ¢(h) = &,
for all h € H and k € K. Relatively to the isomorphism ¢, subgroups H and K can be identified. Then
we write A 15 B the free product of groups A and B over subgroup H, meaning that H is the common
subgroup of groups A and B (indeed, K = ¢(H), where ¢ is the known isomorphism). See [, 4] for

more details.

Definition 2.1. Let H be a subgroup of a group A and let K be a subgroup of a group B. The group
G = (Ax B;[H,K] = 1) generated by all the generators of groups A and B and defined by all the
relators of groups A and B together with all the relations of the form [h,k] = 1, for all h € H and
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k € K, is called the free product of groups A and B with commuting subgroups H and K. In order
words, G is the free product of groups A and B modulo the normal closure of ([H, K]), the commutator
of the subgroups H and K, in group Ax B i.e. G = (Ax B)/([H,K]))“*B). We denote this group by

G=A x B.
[H,K]

Remark 2.2. Loginova in [[d] studied the residual finiteness of free products of abstract groups with

commuting subgroups. She established that the free product G = A [H*K] B of groups A and B with

commuting subgroups H and K can be written as

<AI§(H><K)> aX <(H><K)*B>

X K

which we illustrate by the following diagram

H K

) / \ N
x y
A x B
[H,K]

where 01,09, T1, T2, 1, P2, W1, W2 are canonical homomorphisms, and @1 = Y11 and p2 = YaPa.

So G, the free product of groups A and B with commuting subgroups H and K is unique, up to
isomorphism. Since it can be written as double amalgamated free product, then groups A and B are

canonically embbeded in G. So A and B can be seen as subgroups of group G.

Definition 2.3.

(1) Let G be an abstract group. G is said to be residually finite if, for any non-identity element g
of group G, there is a homomorphism ¢ from G to a finite group X such that ¢(g) # 1 in X.

(2) Let G be a group and H a subgroup of G. The subgroup H is said to be finitely separable if for
any element g of group G not belonging to the subgroup H, there is a normal subgroup N of
finite index of group G, such that g ¢ NH.

(3) Let G=A [H’,(K} B be the free product of groups A and B with commuting subgroups H and K.

Let R and S be normal subgroups of finite index in groups A and B respectively. The subgroups
R and S are [H, K|-compatible if subgroups RNH and SNK commute i.e. [RNH,SNK]|=1.

(4) Let G be a group and H a subgroup of G. A family (R;)icr of subgroups of group G is called
a filtration (respectively a H-filtration) of group G if z’QIRi = 1 (respectively iQIRi =1 and
NHR; = H).

el
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2.2. Free profinite products of profinite groups with commuting subgroups.

Definition 2.4. Let Hy be a closed subgroup of a profinite group Gy and let Hy be a closed subgroup
of a profinite group Go. Let o : Hi — G1 and 7 : Hy — G2 be the inclusion maps. The free profinite
product of the profinite groups G1 and Go with commuting subgroups Hy and Hy is a family (G, p1, p2)
where G is a profinite group and p1 : G1 — G, w3 : Go — G are continuous homomorphisms satisfying:
(1) [pro(H), pom(H)] =1 and
(2) If G’ is a profinite group with continuous homomorphims 1y : G1 — G’ and ¥y : Gy — G’ such
that [110(Hy), Yo7 (Ha)| = 1, then there exists a unique continuous homomorphism ¢ : G — G’
such that Y1 = Y1 and Vs = 1s.

Remark 2.5. Since a profinite group is a projective limit of a projective system of finite groups, it is

enough to consider G' finite to check the second part of the previous definition.

A concrete free profinite product of profinite groups G; and Go with commuting subgroups H; and
Hs can be constructed as follow:

Let Hy be a closed subgroup of a profinite group G; and Hs be a closed subgroup of a profinite
group Go. Let 0 : H] — G1 and 7 : Hy — (9 be continuous monomorphisms. Then one can construct
the abstract free product G of abstract groups Gy and Go with commuting subgroups H; and Hs i.e.

G = Gy i *H ]Gg. We have the inclusions ¢; : G; — é, for every i = 1,2. Now any G; can be identified
1,412

to its image in the group G. Let N = {N <y G:NNG;isopenin Gy,i = 1,2}
If N1, Ny € N, and N7 C N», then a natural epimorphism é/Nl — G/NQ can be defined. These maps

make the system {G/N, N € N} projective. Let now G = lim G/N be the profinite completion of the
Nen

abstract group G. Let p: G — G be the canonical homomorphism. Then for any ¢ = 1,2 we have
¢; = ¢p; : G; — G is a homomorphism. So, the family (@ ,©1,¢2) is the free profinite product of the

profinite groups G; and G5 with commuting subgroups H; and Hs as we illustrate by the following

diagram:

H,y Hy

g T

G]_ Y1 G Y2 G2

e1 . p2
P
v
G
Indeed, we have [p10(Hy), ga1(Hs)] = 1 from the construction of G and since @ is a group homo-

morphism, then [pp10(H1), pPo1(Ha)] = 1. Thus [p10(H1), po1(Hsa)] = 1.
Let now G’ be a finite group. Let ¥ : G; — G’ and 12 : G2 — G’ be continuous homomorphisms such
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that [1)10(H1), 27 (H2)] = 1. By the universal property of the free product of the abstract groups G
and Go with commuting subgroups H; and Ha, there exists a unique group homomorphism ¢ : G — G’
satisfying 1; = 9@, i = 1,2. We have (@;)~(ker)) = kerip;, i = 1,2. Since G’ is haussdorff, then
{1¢} is closed. Moreover G’ is compact; thus {14}, as closed subgroup of finite index, is open. So,
for i = 1,2 ker; = ()" 1({1er}) is open i.e. (@;)~*(kert) is open in G;. Thus keri) € N. Let U be
an open normal subgroup of finite index of G'. Then U is an open neighbourhood of {1¢/}, and we
trivially have that the image of kemﬂ by @B is contained in U. So 1/; is continuous, since it is continuous
on {1z}. Then, by the definition of @, there is a continuous homomorphism ¥ : G- G satisfying
¥ = @. Hence, we have g, = Y@@ = @, = 1. Similarly, we obtain s = V@Gs = @ = 1s.
Since G is the profinite completion of the abstract group G which is generated by groups G; and Go,

then G = (p1(G1),p2(G2)). Consequently, 1 is unique. Now, (@, ©1,p2) is the free profinite product
of the profinite groups G; and G5 with commuting subgroups H; and Hs.

Proposition 2.6. The free profinite product of profinite groups G1 and Go with commuting subgroups

H, and Hs is unique up to a continuous isomorphism.

So, G = G1 ][] Go will denote the free profinite product of profinite groups G; and Gy with
[H1,H>]
commuting subgroups H; and Ho.

In the definition of the free profinite product of profinite groups GG1 and G2 with commuting subgroups
H; and Hs, it can happen that the continuous homomorphisms ;, i = 1,2 are not injective. We then
remind that, when these homomorphisms are injective, then the free profinite product of profinite
groups (G1 and G2 with commuting subgroups H; and Hj is proper. The following result gives an easier

characterization of a proper free profinite product of profinite groups with commuting subgroups.

Proposition 2.7. Let Hi be a closed subgroup of a profinite group G1 and Hs be a closed subgroup of

a profinite group Go. Let o : Hy — G1 and 7 : Ho — G9 be the inclusions maps. Put G=0G, i *H ]Gg
1,412

the free product of the abstract groups G1 and Go with commuting subgroups Hi and Hs, and for every

i=1,2 3 : G = G the canonical inclusion. Let G = G [I G2 be the free profinite product of
[H1,H>]
the profinite groups G1 and Go with commuting subgroups Hi and Ha, and for every i = 1,2, let

@i : Gi — G the canonical continuous homomorphisms. Consider @ : G — G the homomorphism such
that for every i = 1,2 p; = ©@; and let P = kergp. Then the free profinite product of the profinite
groups G1 and Go with commuting subgroups Hy and Hs is proper if and only if G; NP =1, for every
i=1,2.

3. Proofs of theorem 1 and corollary

3.1. Proof of theorem I1. a. = b. Assume that 6 is injective. Then kerf N G; = 1, and the result
follows from proposition 274

b. = c. The canonical homomorphisms ¢; : G; — G1 [] G2 (i = 1,2) are injective. So G; can be
[H1,Ho2]
considered as subgroups of G; [ Gaz. Since G; are profinite groups, let U; = {U;) : A € A;} be families
[Hi,Ho]
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of open normal subgroups of finite index of G; (i = 1,2). Then U; is a filtration. For any A\; € A1 and
A2 € Ao, we have Hy N U\ < Hy, Hy NUsy < Hy, and then we obtain [Hy N Uyy, Ho N Usy] = 1 since
[H1, Ha) = 1. Now one can choose A such that for any A € A there exist Uy € Uy and Usy € Uy which
are [Hy, Hy]-compatible.

c. = a. Assume that the collections U; and Us are filtered from below: indeed, if it is not, replace U;
(i = 1,2) by the collection of all finite intersections of its elements. It follows from Proposition 2.1.4.
in [I5] that

(3.1) (VHiUin=Hi and [ )HyUs = Hy
AEA AEA

So for i = 1,2, the families U; are H;-filtrations.
Let 1 #9g € G=G; + Gy. We need to show that 0(g) # 1. Recall that G = M x N where

[Hl,HQ] H1><H2

M:G1 * (H1XH2) andN:G2 * (H1><H2).
H1 H2

Let g = g192 - - - gn be the reduced form of g with respect to the decomposition M . *H N of G.
1 X H2

Case 1: Consider n=1;i.e. g€ M or g € N.
If g € M, then let g = 129 - - - &, be the reduced form of g with respect to the decomposition
M =Gy }7}1 (Hy x H3). Hence if m =1, then g € Gy or g € H; x Hs.
o If g Gy, and g ¢ (H; x Ha), then g ¢ Hy. From equations (B), there exists some A € A
and Uy € U such that g ¢ H1U;y. We have therefore

(3.2) [HlﬂUl)\,HgﬂUg)\] =1.

On the other hand, since HlUl)\/Ul)\ = Hl/Hl NU;y and HQUQ)\/UQ)\ = HQ/HQ NUsy, then
we have from (B2) that

(H1U1x/Uix, HaU2y/Uay] = 1.

Now consider the following commutative diagram,

G1 * G2 Gl H G2
[Hq1,H>] [H1,H2]
H v
O
G /U * G+ /U- G1/U Go/U-
/U1 [H1U /Uy x , Hol 5 /Un ] 2/U2x 1/ 1)\[HlUD\/UlA]TIHQUQA/UQA] 2/U2x

where p and v are induced by the canonical epimorphisms G; — G;/U;y, (i = 1,2), res-
pectively. By the choice of Ujy and Usy, one has p(g) # 1. Since G1/Upy and Go/Usy

are finite, then G1/Upy 11 G2/Usy is residually finite. So 05 (u(g)) # 1 i.e.
[H1U1x/U1x,H2U2x /U2,

v(0(g)) # 1. Consequently 6(g) # 1.
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e Assume that g € Hy xHs, i.e g = h1hy, where hy € Hy and hy € Hs. Since g is a nonidentity
element in Hy X Hos, at least one of the element hy and ho differs from 1. Without lost of
generality let hy # 1. Since U; is a filtration, then there exists A € A such that hy ¢ Uyy.

Hence 1 # hy ¢ Uy in the residually finite group G1/Ujx 11 G2/Usy. By
[H1U1x/Uix,H2Usy [Uz,]
a similar method as above, 6(g) # 1.

e If m > 1, then the elements x1, o,. .., z,, belong alternatively to one of the subgroups G
and H; x Hy but do not belong to H;. Let for example z1,z3,... € G1\ Hi and 22,24, ... €
(Hy x Hy) \ Hy. Then, from (BT), there exists some X' € A and Uyy € U such that
x1,x3,... ¢ HiUpy. By the Ho-projection p : Hy x Hy — Hj, the images by p of elements
To, X4,...differ from 1. Consequently, elements s, x4,. .. differ from 1 in Hy. Since family
Us is a filtration, there exists some \” € A such that xo, 4, ... & Uyys. Now the collections
Uy and Uy are filtered from below; so there exists A € A such that z1,x3,... ¢ H Uy and
X9, 4, ... ¢ Usy. Moreover we have [H1NUyy, HoNUszy] = 1. So p(g) = x1UppaUsy -+ # 1

in the residually finite group G1/Ujx 11 G2/Usy. Similarly, 0(g) # 1.
[H1Uix/Uix,H2Uzx /U2y]
A similar method can be used if g € N.

Case 2: Consider n > 1. Then the elements g1, g2,..., gn belong alternatively to one of the
subgroups M and N but not in H; x Hy. If for example ¢1,93,... € M \ (H; x Hs) and
92,94,-.. € N\ (Hy x Hy), then ¢1,¢s,... ¢ Hy and g2, 94,... ¢ Ho. Since families Uy and Uy
are Hq-filtration and Hs-filtration respectively, then there exist A € A, Uy € Uy and Us), € Us
such that g1,gs,... ¢ H Ui\ and go,g4,... ¢ HoUsy. Now u(g) = g1Uirng2Usy -+ # 1 in the

residually finite group G1/Ui) 11 G2/Usy. As above, 0(g) # 1.
[H1U1x/Urx,H2U2x /U2

3.2. Proof of Corollary ICA. Let G be a profinite group, let H; and Hy two closed subgroups of
G. Let Gy and G5 be two copies of G. Consider ¢ : H; — G1 and 7 : Hy — (G2 some continuous

monomorphisms. Denote by G = G " *H | G- the free product of abstract groups G1 and Go with
1,412

commuting subgroups H; and Hy. Consider i1 : G1 — G and 19 : Go — G the canonical injections. We

have
(33) [ild(Hl),iQT(HQ)] =1.

Take {U) : A € A} the collection of normal subgroups of finite index of G (since G is a profinite group).
Let ¢ : G; — G4 be an isomorphism of topological groups and let {¢(Uy) : A € A} the collection of
normal subgroups of finite index of G3. Then from (B3), [i10(UxN H1),i27(p(Ux) N H2)] = 1. Now the
families {Uy : A € A} and {¢(U)) : A € A} are filtrations of groups G; and G2 respectively, and for any
A € A, subgroups Uiy and ¢(Uyy) are [Hy, Ho|-compatible. The result then follows from theorem I

We now give an example of non proper free profinite product of profinite groups with commuting
subgroups.

Example.
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Let A and B be two finite nontrivial groups. Consider T} = A% and Ty = B%, the products of infinite
numbers of copies of A and B respectively. Define the automorphisms o and o} of T1, o9 and o}, of Tb
by o1(an) = (a—n), oi(an) = (a1-y), o2(b,) = (b—p,) and o (b,) = (b1—p). These automorphisms have
order 2, and hence they define continuous actions of Z/Zs on T and of Z/Zs on T» respectively. Now
consider the two automorphisms ¢ and 9 of T7 X Ty defined by ¢1((an), (bn)) = (01(an), 02(by)) and
wa((an), (bn)) = (0} (an), o5(by)). These automorphisms have order 2; they define continuous actions of

Z]Zs on Ty x Ty. Consequently the semidirect products
Gl = (Tl X TQ) X1 Z/QZ and G2 = (Tl X TQ) X Z/2Z

are profinite groups. Following Serre through his example in [I3], we can say that the free profinite

amalgamated product G; [[ G2 of the profinite groups G; and Ga over T} x Ts is not proper. Thus
T1 XTQ
by theorem 9.2.4 in [I5], the canonical homomorphism 6 : G1 x Gy — G1 []| G2 is not injective.
Tl XTQ T1 ><T2
Now consider the inclusion

w:G1 x Gy — Gy x G,

Ty xT> [Tl,TQ]
the homomorphism
v:G H Gy — Gy H Go
Ty xT> [Tl,TQ]

and the canonical homomorphism

w:G *x Gy — Gy HG2

1. Te) [T1,T>)
We obtain the following commutative diagram
0
G1 * G2 G1 H GQ
TlXTQ T]_ ><T2
w v
Gr *x Gy —= Gy 11 G
[T1,T2] [T1,T3]

It is clear that the homomorphism w is not injective, since € is not injective. Consequently G1 [[ G2
[T1,T5]
cannot be proper.

4. Profinite completions of free products of groups with commuting subgroups

4.1. Profinite completion of abstract groups. Let G be an abstract group and let AV be the
collection of all normal subgroups of finite index of GG. Recall that the profinite completion G of group

G is the inverse limit of the projective system (G/N)nyen of the groups G/N i.e. G = lim G/N. So,
~ Nen
G is a profinite group.

The following characterization is obvious:



34 Int. J. Group Theory, 5 no. 2 (2016) 25-40 G. Mantika and D. Tieudjo

Proposition 4.1. Let G be an abstract group. The profinite completion of the group G is a profinite
group G together with a continuous homomorphism 0 : G — G which is onto on a dense subgroup of
6, where G is endowed with the profinite topology, satisfying the following universal property: for any
profinite group G’ and any continuous homomorphism ¢ : G — G', there exists a unique continuous

homomorphism @ : G — G’ such that 0 = .
Remark 4.2. To check the universal property, it suffices to consider G' a finite group.

The profinite completion of an abstract group is unique, up to a topological groups isomorphism.

We write G the profinite completion of the abstract group G when there is no confusion on 6.

4.2. Lemma. Let (G4, 145, 1) and (Gag, pokr, I2) be projective systems of profinite groups over the
directed sets I and I» respectively. For any (i,k) € I; x Is, let Hy; be a closed subgroup of the
profinite group G1; and Hg a closed subgroup of the profinite group Gog. Consider oy, : Hy; — G1;
and o9, : Hor, — Gop, the canonical continuous embeddings. Denote by G1; ][]  Gax the free profinite
[H1i,Hop]
product of the profinite groups G1; and G with commuting subgroups Hy; and Hoy, and let 61; : G1; —
Glz’ H ng and
[H1i,Hog]
0o : Go, — G1; ]|  Gax be the canonical continuous homomorphisms. Let I1 x Is be endowed with
[H1i,Hog]
the lexicographical order < defined by: for all (i,k),(j,1) € Iy x I, (i,k) < (j,1) if and only if i <

j and k <. Now given (i, k) < (j,7) in I; X I3, then

Orip1ijor;(Huy), Oopprorroor (Har )] = 1.

Put  p4; 11 pokr - G1;  [I G2 — Gi1i ][]  Gax the unique continuous homomorphism
(H1i,Hop, Hyj,Hor) [H1j,Har) [Hyi,Hop)
such that the following diagram is commutative

Hyj Hs,
Ulj o2
015 O
Gy Gi; 11 Gor Gay
[H1;,Har)

| g 11 Hakr .
Hig (Hy;,Hop Hyj,Hapl H2kr
01 Ook
G Gii I Gu Gak
[H1i,Hag)

Then we have:
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Lemma 4.3.

(1) I x Iy is a directed set and

G [ G| m 1T ke | 51 X I
[H1i,Hak) [Hvi,Hap, H1j,Har)

s a projective system over Iy x Is, and
?1 ?2 1x12 [H14,Hog)
limHq; |, | imHgy
n 5

Proof. (1) is obvious.

(2) Let Gl = limGli, G2 = limGQk, H1 = limHh-, Hg = limHQk and G = lim Gli H ng .
T1 Tz Y1 Tz j1><12 [H14,Hopg]

For any (i, k) € I x I3, consider the following projections
pii 2 G1 = Gy, ok - Ga = Gog and g : G — Gy [ Gare
[H1i,Hag)

Then the maps 61,11, : Gi1 — G1;i ][] Gaor are compatible and they induce a continuous
[H1i,Hog]
homomorphism 6, = llmﬁli : G1 — G such that for any (i,k) € I1 x I, the following diagram

I
w

01 Gi I G
[(H1s,Hog)

is commutative

G

G
Thus 01;p01; = pirbs-

By the same way, we obtain a continuous homomorphism 6, = l(i_m92k : G — G such that
I
for any (i,k) € I x Iz, we have Ooxpior = pirbo.

Now the morphisms oy;u1; : Hi — Hi; — Gyp; are also compatible and they induce the
continuous homomorphism oy : Hy — Gy such that, for any i € Iy, o1;u1; = 1501-

We see that o; is injective. Indeed, for all x,y € H; and i € I3, if o1(z) = o1(y), then
u1io1(x) = prio1(y). Hence oyipii(x) = o1311i(y). Since the op; are embeddings, we have
u1i(z) = p1i(y) for any i € I, where p1;(x) is the i-th component of x. Consequently x = y.
Similarly we can define another continuous and injective homomorphism oo : Ho — G such
that ooppior = poros. Then using the definitions of 61, 62, 01 and o2, we obtain the following

equalities

pirb1o1 = Orioip1; and pipbaos = Ogpooppor, for all (i,k) € Iy x Ip (*)
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Now to prove the lemma, it’s enough to prove that (G, 61, 62) is the free profinite product of
the profinite groups G7 and G with commuting subgroups Hq, and Hs.

First we have [0101(H1),0202(H2)] = 1. Indeed, for any (h1, he) € Hi1 x Hy and (i, k) € I X I,
since p1;(h1) € Hy; and pok(he) € Hop and since | G1; [[  Gag, 014, 02x | is the free profinite

[H1i,Hag)
product of the profinite groups G1; and G with commuting subgroups Hi; and Hog, then

using equalities (x), we have
[ik0101(h1), pirbaoa(h2)] = 1, ie. [01i01ip1:(h1), O2roorpior(ho)] = 1.

thus [0101(H1),0202(H2)| =

Finally, consider a finite and discrete group G’. Let ¢1 : G1 — G’ and 2 : G2 — G’ be

continuous homomorphisms such that [p101(H1), p202(H2)] = 1. Since G = hmGlz,
T 1
from lemma 1.1.16 in [I5], there exist j € I; and a continuous homomorphism ¢1; : G1; — G’

such that ¢1ju1; = 1. Similarly since G = 11mG2k7 there exist r € Iy and a continuous
T 2

homomorphism g, : Go, — G’ such that o,uo, = p2. Recall that [¢p101(H1), pao2(Hz)] = 1.

SO [(pljlu,ljal(Hl),QDQT/LQTO'Q(HQ)] = 1. Since Mljo'l = Uljﬂlj and Hor09 = O2r b2y, WE obtain

[Spljo'ljﬂlj(Hl)a QOQTUQT/LQT(HQ)] = 1. Recall also that Nlj(Hl) = Hlj and ,LLQT(HQ) = H,.. Then

[p1;015(H1j), p2ro2,(H2p)] = 1. By the definition of Gi; [[ Ga,, there exists a continuous
[Hyj,Har)
homomorphism ¢j,. : Gi; [ Gar — G’ such that p1; = pjrb1; and @2, = @j.02,.. Let
[HIJaHQT}

© = @jrptjr : G = G'. We have by = pj,pjr01 = ©jrb1ip1; = p1415 = @1. Similarly we have
ply = 9. Consequently (G, 61,63) is the free profinite product of the profinite groups G; and
G2 with commuting subgroups H; and Hs.

O

4.3. Proof of Theorem T3. We suppose conditions a. and b. are satisfied. We need to prove that
A 11 B is the profinite completion of the group A [[ B. We use proposition B

[H,K] [H.K]
So, by the definition of A A]_[A B,putig:H—Aig: K= B iz: A=A A]_[A B and
[H,K] [H,K]
ig : B — A [] B the canonical continuous homomorphisms. Then [izig(H),izip(K)] = 1. Let

[H,K]
groups A, B, H, K, [H, K| and A[ * | B be endowed with the profinite topology. Define the following

canonical continuous homomorphisms: ¢ : H - A, 7: K — B,iga: A— A || B and
[H,K]
ip: B — A [] B. We then have [ia0(H),ip7T(K)] = 1. Now consider the following canonical conti-
[H,K]

nuous homomorphisms lg : H — ﬁ, lg : K — K lg: A— A and lp: B — B. Since H and K are
the profinite completions of H and K respectively, by the universal property, iz and i are the unique
continuous homomorphisms such that izlg = l40 and izlx = IpT. Hence [izlac(H),iglpT(K)] =
i ziglar(H), i gi 2l (K)] = 1, since [izig(H),igiz(K)] = 1, lg(H) < H and Ig(K) < K. Thus by
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the definition of A x B, there exists a group homomorphism ¢ : A x B — A 11 B such that
[H,K] H,K] [ﬁ’f(]
izla =is and iglp = ip. Consequently the following diagram commutes

H K
lg Ik
o T
A “ A4« B2
[H,K]
la P
~ iz T ig
A Al B
[H,K]

Recall that the maps iz, la, i5, IB, i4 and ip are continuous. So, the homomorphism 1 is continuous.
1. Let us prove that ¢ (A * B) is a dense subgroup of A 11 B. From the previous lemma
K] [H,K]

B3, we have

Al B~ 1lim | A/U; 11 B/Vj,
(AR NaxNis (HU,/U; K Vi, Vi)

~

where A = lim A/U;, B = lim B/V;, H = lim H/(U;n H), K = lim K/(V; N K) and
T.eNa VeeNs iEN A4 RENB

A/U; 11 B/ Vi, ik jr, < | is a projective system of profinite groups, N4 and Np are the
[HU; /Ui, K Vi, [ V]
collection of all normal subgroups of finite index of groups A and B respectively, and the order < is

defined on Ny x N by: (U;, Vi) < (Uj,V,) if and only if U; < U; in Ny and V, < Vi in N (4, k, 4,7

are natural numbers), and ¢y, j, : A/U; 11 B/V, — A/U; 11 B/Vj is a continuous
[HU; /U;, KV, [ V] [HU,;/U; , KV}, [ Vi)
homomorphism for (U;, Vi) < (U;, V;) in Ng x N3.

Now for any (U;, Vi) € NaxNg, A/U; 11 BV}, is the free profinite product of the finite (thus
[HUi/Ui,KVk/Vk}
profinite) groups A/U; and B/V}, with commuting subgroups HU;/U; and KV} /Vy. In the cartesian

product

P= H A/U; H B/Vj,

(Ui, Ve ) ENAXNB [HU; /Ui, KVy, [ Vi)

the open sets are unions of intersections of sets of the form

[T k)| x 11 A/U; 11 BV

(S.t)EI()XKQ (i,k)¢10XKO [HUZ/UZ,KV)C/V]C]
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where S;_ 1, is an open subset of A/U;, 1 B/Vy, and, Iy and K are finite sets of positive
[HU;, /Uiy K Vi, /Vi,]

ERl

integers. Now since lim | A/U; 11 B/Vj | is a subset of P, then by the induced topology,
_AXNB [HUL/Ul,KVk/Vk]

every open subset in lim | A/U; 11 B/Vj | has the form
AXNB [HUi/Ui,KVk/Vk]

lim A/U; H B/V;, m O, where O is an open set in P.
Ax N (HU; /U K Vi / Vi

Now take Iy = {i1,...,i,} and Ko = {ki,...,kn} be finite subsets of N and let V' be a non empty

open subset in _lim [ A/U; I B/Vj, |. Then V has the form
AXNB [HUi/Ui,KVk/Vk]

v=_m (4Uv; ] B/W|N

AXNB [HU; /Ui, KVy, [ V]

H (Sis,kt) X H A/UZ H B/Vk

(s.t)e{l,....n}x{1,....m} (4,k)¢Iox Ko [HU; /U , KV, [ V3]

where the S;_ 1, are finite subsets of A/Uj;, 1 B/Vi, with (s,t) € {1,...,n} x{1,...,m}.
[HU;, Uiy K Vi, [ Vi, ]

Then <A * B) AV # 0. Indeed, let x € A * B. Choose ig > i1,...,i, and ko > k1,...,kn
[H,K] [H,K]

such that 1 x, (¥ (z)) = (ziy, yi,) Where the ¥ : A ] B— A/U; I B/V}, are projections.
[H,K) [HU; /Ui, KV}, [ V]

Then, ¢ (x) € V, since the following diagram commutes

A/Ui ]_[ B/Vko
[HUiy /Uiy, K Vig [ Vieg ]
y
W -~ ~
A x B Al B Yigkisky
[H,K] [ﬁ,[?]
Visky

[HUig /Usig , KV, [ Vi, ]

2. Let us prove the universal property. Let ¢ : A [H*K B — G’ be a continuous homomorphism,

)

where G’ is a finite and discrete group. Consider U = {U,U <y G'}, the collection of all normal open
subgroups of group G’. For each U € U, let Ny = ¢~ }(U); then the morphisms

ov:AJ] B— A [H*K] B/Ny — G'/U are compatible. They induce a continuous homomorphism
K] ’
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@: A ] B— limG'/U = @ such that for any U € U, we have oy = qu@, and que = oy as shown
[H K] eu
on the following commutative diagram

« B— Y LA B—Y" o
[H,K] K]
p w
X3
v
G/

Now ¢ = @1. Indeed, take x € A [H*K] B. Then que(z) = pyp(z). Therefore quy(z) = quey(x) for
all z € A[ * | B and any U € U. Thus @ = @1. The uniqueness of ¢ is obtained from the fact that

)

A 11 B =(i3la(A),igls(B)).
[H7K]
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