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Abstract. In this paper we introduce the construction of free profinite products of profinite groups

with commuting subgroups. We study a particular case: the proper free profinite products of profinite

groups with commuting subgroups. We prove some conditions for a free profinite product of profinite

groups with commuting subgroups to be proper. We derive some consequences. We also compute

profinite completions of free products of (abstract) groups with commuting subgroups.

1. Introduction

Profinite groups are known since 1965 when J. P. Serre introduced them in his book “Cohomologie

Galoisienne” [18]. A profinite group G is the inverse limit of a projective system of finite groups

i.e. G = lim←−
i∈I
Gi, where (Gi)i∈I is a projective system of finite (abstract) groups, I is a directed set.

A profinite group G is isomorphic to a closed subgroup of a direct product of finite groups. So,

profinite groups are very large. They are very rich since they have algebraic and topological properties.

A profinite group is a topological, compact, haussdorff and totally disconnected group. A concrete

example of a profinite group is the profinite completion of an abstract group. Given G an abstract

group, the profinite completion Ĝ of group G is the inverse limit of the projective system (G/N)N∈N

of the (finite) quotient groups G/N , where N is the collection of all normal subgroups of finite index

of G i.e. Ĝ = lim←−−−
N∈N

G/N . Profinite groups are “almost finite”, they behave like infinite groups and they

can inherit some properties of the finite groups on which they are built.
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In [9], free constructions (free products, amalgamated free products, HNN-extensions and free prod-

ucts with commuting subgroups) of abstract groups were defined. Many properties amongst which

residual finiteness were investigated on these constructions. Since Baumslag’s study on the residual

finiteness of amalgamated free product of groups [1], several authors [2, 4, 5, 6, 7, 8, 10, 11, 12, 16, 17, 19]

proved some conditions for the residual finiteness of some free constructions of abstract groups. Residual

finiteness and profiniteness are linked. Indeed, a profinite group is residually finite and any residually

finite group naturally injects in its profinite completion. Many authors have studied profinite groups

in different directions [3, 13, 14, 15, 20]. Luis Ribes and Pavel Zalesskii in [15] have introduced free

constructions of profinite groups. They defined free profinite products, amalgamated free profinite

products and profinite HNN-extensions of profinite groups. They studied the particular cases of proper

amalgamated free profinite products and proper profinite HNN-extensions of profinite groups. They

gave examples of amalgamated free profinite product which are not proper and proved some conditions

for their properness [13, 14].

In this paper, we carry similar study for the free profinite products of profinite groups with commu-

ting subgroups. We define this construction here and we denote by A
⨿

[H,K]

B the free profinite product

of profinite groups A and B with commuting subgroups H and K, where A and B are two profinite

groups, and H is a closed subgroup of the profinite group A and K is a closed subgroup of the profinite

group B. It is proper if the continuous homomorphisms A→ A
⨿

[H,K]

B and B → A
⨿

[H,K]

B are injective.

We give an example of non proper free profinite product of profinite groups with commuting subgroups.

We prove some conditions for its properness. We obtain:

Theorem 1.1. Let G1 and G2 be two profinite groups. Let H1 be a closed subgroup of the profinite

group G1 and let H2 be a closed subgroup of the profinite group G2. Let G = G1
⨿

[H1,H2]

G2 be the

free profinite product of profinite groups G1 and G2 with commuting subgroups H1 and H2. Then the

following conditions are equivalent:

a. The natural homomorphism θ : G1 ⋆
[H1,H2]

G2 −→ G1
⨿

[H1,H2]

G2 is injective;

b. G = G1
⨿

[H1,H2]

G2 is proper;

c. There exists an indexing set Λ such that for each i = 1, 2, there is a familly Ui = {Uiλ : λ ∈ Λ}
of open normal subgroups of finite index of Gi with the following properties:

(1) The families U1 and U2 are filtrations and

(2) For each λ ∈ Λ, U1λ and U2λ are [H1,H2]-compatible.

We then derive this consequence.

Corollary 1.2. Let G be a profinite group. Let H1 and H2 be two closed subgroups of G. Let G1 and

G2 be two copies of G. Then the free profinite product of profinite groups G1 and G2 with commuting

subgroups H1 and H2 is proper.

Moreover, profinite completions of abstract groups are profinite. It is very interesting and usual to

compute profinite completions of abstract groups. L. Ribes and P. A. Zalesskii in [15] proved how to
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compute the profinite completions of some free constructions of abstract groups. They showed that

Â ⋆ B = Â
⨿
B̂ i.e. the profinite completion of the free product of the abstract groups A and B is

the free profinite product of the profinite completions Â and B̂ of each of these groups. Under some

conditions, they also showed that Â ⋆
H
B = Â

⨿̂
H

B̂ i.e. the profinite completion of the amalgamted free

product of the abstract groups A and B over a common subgroup H is the amalgamated profinite

product of the profinite completions Â and B̂ of each of these groups over the profinite completion Ĥ of

the common subgroup H. We here compute the profinite completion of some free products of abstract

groups with commuting subgroups. We prove:

Theorem 1.3. Let A and B be abstract groups and let H ≤ A and K ≤ B such that the following two

conditions are satisfied:

a. The profinite topology on A ⋆
[H,K]

B induces the profinite topologies on A, B, H, K and [H,K].

b. There exist an indexing set Λ and the families UA = {UAλ : λ ∈ Λ} and UB = {UBλ : λ ∈ Λ}
of normal subgroups of finite index of A and B respectively, such that UA and UB are filtrations

and for every λ ∈ Λ, UAλ and UBλ are [H,K]-compatible.

Then ̂A ⋆
[H,K]

B = Â
⨿

[Ĥ,K̂]

B̂.

Finally, one can easily observe that, under the above conditions a. and b. in theorem 1.3, Â
⨿

[Ĥ,K̂]

B̂,

the free profinite product of the profinite groups Â and B̂ with commuting subgroups Ĥ and K̂, is

proper.

2. Preliminaries

Through out this work, an abstract group is a group with the usual group structure. If G is a profinite

group, we will also denote by G the underlying abstract group without the topological structure.

2.1. Free products of abstract groups with commuting subgroups. Let A and B be abstract

groups and let H ≤ A andK ≤ B such that H is isomorphic toK through the isomorphism φ : H → K.

We denote by A ⋆
H=

φ
K
B the free product of groups A and B amalgamating subgroups H and K via the

isomorphism φ. This group is generated by the disjoint union of all the generators of groups A and B,

and defined by all the relators of groups A and B, together with all the relations of the form φ(h) = k,

for all h ∈ H and k ∈ K. Relatively to the isomorphism φ, subgroups H and K can be identified. Then

we write A ⋆
H
B the free product of groups A and B over subgroup H, meaning that H is the common

subgroup of groups A and B (indeed, K = φ(H), where φ is the known isomorphism). See [8, 9] for

more details.

Definition 2.1. Let H be a subgroup of a group A and let K be a subgroup of a group B. The group

G = (A ⋆ B; [H,K] = 1) generated by all the generators of groups A and B and defined by all the

relators of groups A and B together with all the relations of the form [h, k] = 1, for all h ∈ H and
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k ∈ K, is called the free product of groups A and B with commuting subgroups H and K. In order

words, G is the free product of groups A and B modulo the normal closure of ([H,K]), the commutator

of the subgroups H and K, in group A ⋆ B i.e. G = (A ⋆ B)/([H,K])(A⋆B). We denote this group by

G = A ⋆
[H,K]

B.

Remark 2.2. Loginova in [7] studied the residual finiteness of free products of abstract groups with

commuting subgroups. She established that the free product G = A ⋆
[H,K]

B of groups A and B with

commuting subgroups H and K can be written as(
A ⋆
H
(H ×K)

)
⋆

H×K

(
(H ×K) ⋆

K
B

)
which we illustrate by the following diagram

H

σ1

��

H ×K

τ1

xxrrr
rrr

rrr
rrr

rrr
rr

τ2

&&LL
LLL

LLL
LLL

LLL
LLL

K

σ2

��
A

φ1

))TTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

T
φ̃1 // A ⋆

H
(H ×K)

ψ̃1

%%JJ
JJ

JJ
JJ

JJ
JJ

JJ
J

(H ×K) ⋆
K
B

ψ̃2

yyttt
tt
tt
tt
tt
tt
tt

B

φ2

uujjjj
jjjj

jjjj
jjjj

jjjj
jjjj

jjjj
jjjj

φ̃2oo

A ⋆
[H,K]

B

where σ1, σ2, τ1, τ2, φ̃1, φ̃2, ψ̃1, ψ̃2 are canonical homomorphisms, and φ1 = ψ̃1φ̃1 and φ2 = ψ̃2φ̃2.

So G, the free product of groups A and B with commuting subgroups H and K is unique, up to

isomorphism. Since it can be written as double amalgamated free product, then groups A and B are

canonically embbeded in G. So A and B can be seen as subgroups of group G.

Definition 2.3.

(1) Let G be an abstract group. G is said to be residually finite if, for any non-identity element g

of group G, there is a homomorphism φ from G to a finite group X such that φ(g) ̸= 1 in X.

(2) Let G be a group and H a subgroup of G. The subgroup H is said to be finitely separable if for

any element g of group G not belonging to the subgroup H, there is a normal subgroup N of

finite index of group G, such that g /∈ NH.

(3) Let G = A ⋆
[H,K]

B be the free product of groups A and B with commuting subgroups H and K.

Let R and S be normal subgroups of finite index in groups A and B respectively. The subgroups

R and S are [H,K]-compatible if subgroups R∩H and S ∩K commute i.e. [R∩H,S ∩K] = 1.

(4) Let G be a group and H a subgroup of G. A family (Ri)i∈I of subgroups of group G is called

a filtration (respectively a H-filtration) of group G if ∩
i∈I
Ri = 1 (respectively ∩

i∈I
Ri = 1 and

∩
i∈I
HRi = H).
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2.2. Free profinite products of profinite groups with commuting subgroups.

Definition 2.4. Let H1 be a closed subgroup of a profinite group G1 and let H2 be a closed subgroup

of a profinite group G2. Let σ : H1 → G1 and τ : H2 → G2 be the inclusion maps. The free profinite

product of the profinite groups G1 and G2 with commuting subgroups H1 and H2 is a family (G,φ1, φ2)

where G is a profinite group and φ1 : G1 → G, φ2 : G2 → G are continuous homomorphisms satisfying:

(1) [φ1σ(H1), φ2τ(H2)] = 1 and

(2) If G′ is a profinite group with continuous homomorphims ψ1 : G1 → G′ and ψ2 : G2 → G′ such

that [ψ1σ(H1), ψ2τ(H2)] = 1, then there exists a unique continuous homomorphism ψ : G→ G′

such that ψφ1 = ψ1 and ψφ2 = ψ2.

Remark 2.5. Since a profinite group is a projective limit of a projective system of finite groups, it is

enough to consider G′ finite to check the second part of the previous definition.

A concrete free profinite product of profinite groups G1 and G2 with commuting subgroups H1 and

H2 can be constructed as follow:

Let H1 be a closed subgroup of a profinite group G1 and H2 be a closed subgroup of a profinite

group G2. Let σ : H1 → G1 and τ : H2 → G2 be continuous monomorphisms. Then one can construct

the abstract free product G̃ of abstract groups G1 and G2 with commuting subgroups H1 and H2 i.e.

G̃ = G1 ⋆
[H1,H2]

G2. We have the inclusions φ̃i : Gi → G̃, for every i = 1, 2. Now any Gi can be identified

to its image in the group G̃. Let N = {N ◁f G̃ : N ∩Gi is open in Gi, i = 1, 2}.
If N1, N2 ∈ N , and N1 ⊆ N2, then a natural epimorphism G̃/N1 → G̃/N2 can be defined. These maps

make the system {G̃/N,N ∈ N} projective. Let now Ĝ = lim←−−−
N∈N

G̃/N be the profinite completion of the

abstract group G̃. Let φ̃ : G̃ → Ĝ be the canonical homomorphism. Then for any i = 1, 2 we have

φi = φ̃φ̃i : Gi → Ĝ is a homomorphism. So, the family (Ĝ, φ1, φ2) is the free profinite product of the

profinite groups G1 and G2 with commuting subgroups H1 and H2 as we illustrate by the following

diagram:

H1

σ

��

H2

τ

��
G1

φ1

��?
??

??
??

??
??

??
??

??

φ̃1 // G̃

φ̃

��

G2

φ2

����
��
��
��
��
��
��
��
�

φ̃2oo

Ĝ

Indeed, we have [φ̃1σ(H1), φ̃2τ(H2)] = 1 from the construction of G̃ and since φ̃ is a group homo-

morphism, then [φ̃φ̃1σ(H1), φ̃φ̃2τ(H2)] = 1. Thus [φ1σ(H1), φ2τ(H2)] = 1.

Let now G′ be a finite group. Let ψ1 : G1 → G′ and ψ2 : G2 → G′ be continuous homomorphisms such
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that [ψ1σ(H1), ψ2τ(H2)] = 1. By the universal property of the free product of the abstract groups G1

and G2 with commuting subgroups H1 and H2, there exists a unique group homomorphism ψ̃ : G̃→ G′

satisfying ψi = ψ̃φ̃i, i = 1, 2. We have (φ̃i)
−1(kerψ̃) = kerψi, i = 1, 2. Since G′ is haussdorff, then

{1G′} is closed. Moreover G′ is compact; thus {1G′}, as closed subgroup of finite index, is open. So,

for i = 1, 2 kerψi = (ψi)
−1({1G′}) is open i.e. (φ̃i)

−1(kerψ̃) is open in Gi. Thus kerψ̃ ∈ N . Let U be

an open normal subgroup of finite index of G′. Then U is an open neighbourhood of {1G′}, and we

trivially have that the image of kerψ̃ by ψ̃ is contained in U . So ψ̃ is continuous, since it is continuous

on {1G̃}. Then, by the definition of Ĝ, there is a continuous homomorphism ψ : Ĝ → G′ satisfying

ψ̃ = ψφ̃. Hence, we have ψφ1 = ψφ̃φ̃1 = ψ̃φ̃1 = ψ1. Similarly, we obtain ψφ2 = ψφ̃φ̃2 = ψ̃φ̃2 = ψ2.

Since Ĝ is the profinite completion of the abstract group G̃ which is generated by groups G1 and G2,

then Ĝ = ⟨φ1(G1), φ2(G2)⟩. Consequently, ψ is unique. Now, (Ĝ, φ1, φ2) is the free profinite product

of the profinite groups G1 and G2 with commuting subgroups H1 and H2.

Proposition 2.6. The free profinite product of profinite groups G1 and G2 with commuting subgroups

H1 and H2 is unique up to a continuous isomorphism.

So, G = G1
⨿

[H1,H2]

G2 will denote the free profinite product of profinite groups G1 and G2 with

commuting subgroups H1 and H2.

In the definition of the free profinite product of profinite groupsG1 andG2 with commuting subgroups

H1 and H2, it can happen that the continuous homomorphisms φi, i = 1, 2 are not injective. We then

remind that, when these homomorphisms are injective, then the free profinite product of profinite

groups G1 and G2 with commuting subgroups H1 and H2 is proper. The following result gives an easier

characterization of a proper free profinite product of profinite groups with commuting subgroups.

Proposition 2.7. Let H1 be a closed subgroup of a profinite group G1 and H2 be a closed subgroup of

a profinite group G2. Let σ : H1 → G1 and τ : H2 → G2 be the inclusions maps. Put G̃ = G1 ⋆
[H1,H2]

G2

the free product of the abstract groups G1 and G2 with commuting subgroups H1 and H2, and for every

i = 1, 2 φ̃i : Gi → G̃ the canonical inclusion. Let G = G1
⨿

[H1,H2]

G2 be the free profinite product of

the profinite groups G1 and G2 with commuting subgroups H1 and H2, and for every i = 1, 2, let

φi : Gi → G the canonical continuous homomorphisms. Consider φ̃ : G̃ → G the homomorphism such

that for every i = 1, 2 φi = φ̃φ̃i and let P = kerφ̃. Then the free profinite product of the profinite

groups G1 and G2 with commuting subgroups H1 and H2 is proper if and only if Gi ∩ P = 1, for every

i = 1, 2.

3. Proofs of theorem 1.1 and corollary 1.2

3.1. Proof of theorem 1.1. a.⇒ b. Assume that θ is injective. Then kerθ ∩Gi = 1, and the result

follows from proposition 2.7.

b.⇒ c. The canonical homomorphisms φi : Gi → G1
⨿

[H1,H2]

G2 (i = 1, 2) are injective. So Gi can be

considered as subgroups of G1
⨿

[H1,H2]

G2. Since Gi are profinite groups, let Ui = {Uiλ : λ ∈ Λi} be families
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of open normal subgroups of finite index of Gi (i = 1, 2). Then Ui is a filtration. For any λ1 ∈ Λ1 and

λ2 ∈ Λ2, we have H1 ∩ U1λ ≤ H1, H2 ∩ U2λ ≤ H2, and then we obtain [H1 ∩ U1λ,H2 ∩ U2λ] = 1 since

[H1,H2] = 1. Now one can choose Λ such that for any λ ∈ Λ there exist U1λ ∈ U1 and U2λ ∈ U2 which

are [H1,H2]-compatible.

c.⇒ a. Assume that the collections U1 and U2 are filtered from below: indeed, if it is not, replace Ui
(i = 1, 2) by the collection of all finite intersections of its elements. It follows from Proposition 2.1.4.

in [15] that

(3.1)
∩
λ∈Λ

H1U1λ = H1 and
∩
λ∈Λ

H2U2λ = H2

So for i = 1, 2, the families Ui are Hi-filtrations.

Let 1 ̸= g ∈ G = G1 ⋆
[H1,H2]

G2. We need to show that θ(g) ̸= 1. Recall that G = M ⋆
H1×H2

N where

M = G1 ⋆
H1

(H1 ×H2) and N = G2 ⋆
H2

(H1 ×H2).

Let g = g1g2 · · · gn be the reduced form of g with respect to the decomposition M ⋆
H1×H2

N of G.

Case 1: Consider n = 1; i.e. g ∈M or g ∈ N .

If g ∈M , then let g = x1x2 · · ·xm be the reduced form of g with respect to the decomposition

M = G1 ⋆
H1

(H1 ×H2). Hence if m = 1, then g ∈ G1 or g ∈ H1 ×H2.

• If g ∈ G1, and g /∈ (H1 ×H2), then g /∈ H1. From equations (3.1), there exists some λ ∈ Λ

and U1λ ∈ U1 such that g /∈ H1U1λ. We have therefore

(3.2) [H1 ∩ U1λ,H2 ∩ U2λ] = 1.

On the other hand, since H1U1λ/U1λ
∼= H1/H1∩U1λ and H2U2λ/U2λ

∼= H2/H2∩U2λ, then

we have from (3.2) that

[H1U1λ/U1λ,H2U2λ/U2λ] = 1.

Now consider the following commutative diagram,

G1 ⋆
[H1,H2]

G2

µ

��

θ // G1
⨿

[H1,H2]

G2

ν

��
G1/U1λ ⋆

[H1U1λ/U1λ,H2U2λ/U2λ]
G2/U2λ

θλ // G1/U1λ
⨿

[H1U1λ/U1λ,H2U2λ/U2λ]

G2/U2λ

where µ and ν are induced by the canonical epimorphisms Gi → Gi/Uiλ, (i = 1, 2), res-

pectively. By the choice of U1λ and U2λ, one has µ(g) ̸= 1. Since G1/U1λ and G2/U2λ

are finite, then G1/U1λ
⨿

[H1U1λ/U1λ,H2U2λ/U2λ]

G2/U2λ is residually finite. So θλ(µ(g)) ̸= 1 i.e.

ν(θ(g)) ̸= 1. Consequently θ(g) ̸= 1.
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• Assume that g ∈ H1×H2, i.e g = h1h2, where h1 ∈ H1 and h2 ∈ H2. Since g is a nonidentity

element in H1 ×H2, at least one of the element h1 and h2 differs from 1. Without lost of

generality let h1 ̸= 1. Since U1 is a filtration, then there exists λ ∈ Λ such that h1 /∈ U1λ.

Hence 1 ̸= h1 /∈ U1λ in the residually finite group G1/U1λ
⨿

[H1U1λ/U1λ,H2U2λ/U2λ]

G2/U2λ. By

a similar method as above, θ(g) ̸= 1.

• If m > 1, then the elements x1, x2,. . . , xm belong alternatively to one of the subgroups G1

and H1×H2 but do not belong to H1. Let for example x1, x3, . . . ∈ G1\H1 and x2, x4, . . . ∈
(H1 × H2) \ H1. Then, from (3.1), there exists some λ′ ∈ Λ and U1λ′ ∈ U1 such that

x1, x3, . . . /∈ H1U1λ′ . By the H2-projection p : H1 ×H2 → H2, the images by p of elements

x2, x4,. . . differ from 1. Consequently, elements x2, x4,. . . differ from 1 in H2. Since family

U2 is a filtration, there exists some λ′′ ∈ Λ such that x2, x4, . . . /∈ U2λ′′ . Now the collections

U1 and U2 are filtered from below; so there exists λ ∈ Λ such that x1, x3, . . . /∈ H1U1λ and

x2, x4, . . . /∈ U2λ. Moreover we have [H1∩U1λ,H2∩U2λ] = 1. So µ(g) = x1U1λx2U2λ · · · ̸= 1

in the residually finite group G1/U1λ
⨿

[H1U1λ/U1λ,H2U2λ/U2λ]

G2/U2λ. Similarly, θ(g) ̸= 1.

A similar method can be used if g ∈ N .

Case 2: Consider n > 1. Then the elements g1, g2,. . . , gn belong alternatively to one of the

subgroups M and N but not in H1 × H2. If for example g1, g3, . . . ∈ M \ (H1 × H2) and

g2, g4, . . . ∈ N \ (H1 ×H2), then g1, g3, . . . /∈ H1 and g2, g4, . . . /∈ H2. Since families U1 and U2

are H1-filtration and H2-filtration respectively, then there exist λ ∈ Λ, U1λ ∈ U1 and U2λ ∈ U2

such that g1, g3, . . . /∈ H1U1λ and g2, g4, . . . /∈ H2U2λ. Now µ(g) = g1U1λg2U2λ · · · ̸= 1 in the

residually finite group G1/U1λ
⨿

[H1U1λ/U1λ,H2U2λ/U2λ]

G2/U2λ. As above, θ(g) ̸= 1.

3.2. Proof of Corollary 1.2. Let G be a profinite group, let H1 and H2 two closed subgroups of

G. Let G1 and G2 be two copies of G. Consider σ : H1 → G1 and τ : H2 → G2 some continuous

monomorphisms. Denote by G̃ = G1 ⋆
[H1,H2]

G2 the free product of abstract groups G1 and G2 with

commuting subgroups H1 and H2. Consider i1 : G1 → G̃ and i2 : G2 → G̃ the canonical injections. We

have

(3.3) [i1σ(H1), i2τ(H2)] = 1.

Take {Uλ : λ ∈ Λ} the collection of normal subgroups of finite index of G1 (since G1 is a profinite group).

Let φ : G1 → G2 be an isomorphism of topological groups and let {φ(Uλ) : λ ∈ Λ} the collection of

normal subgroups of finite index of G2. Then from (3.3), [i1σ(Uλ ∩H1), i2τ(φ(Uλ)∩H2)] = 1. Now the

families {Uλ : λ ∈ Λ} and {φ(Uλ) : λ ∈ Λ} are filtrations of groups G1 and G2 respectively, and for any

λ ∈ Λ, subgroups U1λ and φ(U1λ) are [H1,H2]-compatible. The result then follows from theorem 1.1.

We now give an example of non proper free profinite product of profinite groups with commuting

subgroups.

Example.
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Let A and B be two finite nontrivial groups. Consider T1 = AZ and T2 = BZ, the products of infinite

numbers of copies of A and B respectively. Define the automorphisms σ1 and σ′1 of T1, σ2 and σ′2 of T2

by σ1(an) = (a−n), σ
′
1(an) = (a1−n), σ2(bn) = (b−n) and σ

′
2(bn) = (b1−n). These automorphisms have

order 2, and hence they define continuous actions of Z/Z2 on T1 and of Z/Z2 on T2 respectively. Now

consider the two automorphisms φ1 and φ2 of T1 × T2 defined by φ1((an), (bn)) = (σ1(an), σ2(bn)) and

φ2((an), (bn)) = (σ′1(an), σ
′
2(bn)). These automorphisms have order 2; they define continuous actions of

Z/Z2 on T1 × T2. Consequently the semidirect products

G1 = (T1 × T2)×φ1 Z/2Z and G2 = (T1 × T2)×φ2 Z/2Z

are profinite groups. Following Serre through his example in [13], we can say that the free profinite

amalgamated product G1
⨿

T1×T2
G2 of the profinite groups G1 and G2 over T1 × T2 is not proper. Thus

by theorem 9.2.4 in [15], the canonical homomorphism θ : G1 ⋆
T1×T2

G2 → G1
⨿

T1×T2
G2 is not injective.

Now consider the inclusion

µ : G1 ⋆
T1×T2

G2 → G1 ⋆
[T1,T2]

G2,

the homomorphism

ν : G1

⨿
T1×T2

G2 → G1

⨿
[T1,T2]

G2

and the canonical homomorphism

ω : G1 ⋆
[T1,T2]

G2 → G1

⨿
[T1,T2]

G2

We obtain the following commutative diagram

G1 ⋆
T1×T2

G2

µ

��

θ // G1
⨿

T1×T2
G2

ν

��
G1 ⋆

[T1,T2]
G2

ω // G1
⨿

[T1,T2]

G2

It is clear that the homomorphism ω is not injective, since θ is not injective. Consequently G1
⨿

[T1,T2]

G2

cannot be proper.

4. Profinite completions of free products of groups with commuting subgroups

4.1. Profinite completion of abstract groups. Let G be an abstract group and let N be the

collection of all normal subgroups of finite index of G. Recall that the profinite completion Ĝ of group

G is the inverse limit of the projective system (G/N)N∈N of the groups G/N i.e. Ĝ = lim←−−−
N∈N

G/N . So,

Ĝ is a profinite group.

The following characterization is obvious:



34 Int. J. Group Theory, 5 no. 2 (2016) 25-40 G. Mantika and D. Tieudjo

Proposition 4.1. Let G be an abstract group. The profinite completion of the group G is a profinite

group Ĝ together with a continuous homomorphism θ : G → Ĝ which is onto on a dense subgroup of

Ĝ, where G is endowed with the profinite topology, satisfying the following universal property: for any

profinite group G′ and any continuous homomorphism φ : G → G′, there exists a unique continuous

homomorphism φ̂ : Ĝ→ G′ such that φ̂θ = φ.

Remark 4.2. To check the universal property, it suffices to consider G′ a finite group.

The profinite completion of an abstract group is unique, up to a topological groups isomorphism.

We write Ĝ the profinite completion of the abstract group G when there is no confusion on θ.

4.2. Lemma. Let (G1i, µ1ij , I1) and (G2k, µ2kr, I2) be projective systems of profinite groups over the

directed sets I1 and I2 respectively. For any (i, k) ∈ I1 × I2, let H1i be a closed subgroup of the

profinite group G1i and H2k a closed subgroup of the profinite group G2k. Consider σ1i : H1i → G1i

and σ2k : H2k → G2k the canonical continuous embeddings. Denote by G1i
⨿

[H1i,H2k]

G2k the free profinite

product of the profinite groups G1i and G2k with commuting subgroupsH1i andH2k, and let θ1i : G1i →
G1i

⨿
[H1i,H2k]

G2k and

θ2k : G2k → G1i
⨿

[H1i,H2k]

G2k be the canonical continuous homomorphisms. Let I1 × I2 be endowed with

the lexicographical order ≤ defined by: for all (i, k), (j, l) ∈ I1 × I2, (i, k) ≤ (j, l) if and only if i ≤
j and k ≤ l. Now given (i, k) ≤ (j, r) in I1 × I2, then

[θ1iµ1ijσ1j(H1j), θ2kµ2krσ2r(H2r)] = 1.

Put µ1ij
⨿

[H1i,H2k,H1j ,H2r]

µ2kr : G1j
⨿

[H1j ,H2r]

G2r → G1i
⨿

[H1i,H2k]

G2k the unique continuous homomorphism

such that the following diagram is commutative

H1j

σ1j

��

H2r

σ2r

��
G1j

θ1j //

µ1ij

��

G1j
⨿

[H1j ,H2r]

G2r

µ1ij
⨿

[H1i,H2k,H1j ,H2r ]

µ2kr

��

G2r
θ2roo

µ2kr

��
G1i

θ1i // G1i
⨿

[H1i,H2k]

G2k G2k

θ2koo

Then we have:
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Lemma 4.3.

(1) I1 × I2 is a directed set andG1i

⨿
[H1i,H2k]

G2k

 ,

µ1ij ⨿
[H1i,H2k,H1j ,H2r]

µ2kr

 , I1 × I2


is a projective system over I1 × I2, and

(2)

(
lim←−
I1

G1i

) ⨿[(
lim←−
I1

H1i

)
,

(
lim←−
I2

H2k

)]
(
lim←−
I2

G2k

)
∼= lim←−−−

I1×I2

(
G1i

⨿
[H1i,H2k]

G2k

)
.

Proof. (1) is obvious.

(2) Let G1 = lim←−
I1

G1i, G2 = lim←−
I2

G2k, H1 = lim←−
I1

H1i, H2 = lim←−
I2

H2k and G = lim←−−−
I1×I2

(
G1i

⨿
[H1i,H2k]

G2k

)
.

For any (i, k) ∈ I1 × I2, consider the following projections

µ1i : G1 → G1i, µ2k : G2 → G2k and µik : G→ G1i

⨿
[H1i,H2k]

G2k.

Then the maps θ1iµ1i : G1 → G1i
⨿

[H1i,H2k]

G2k are compatible and they induce a continuous

homomorphism θ1 = lim←−
I 1

θ1i : G1 → G such that for any (i, k) ∈ I1 × I2, the following diagram

is commutative

G1

θ1iµ1i

((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

θ1

��

G1i
⨿

[H1i,H2k]

G2k

G

µik

66mmmmmmmmmmmmm

Thus θ1iµ1i = µikθ1.

By the same way, we obtain a continuous homomorphism θ2 = lim←−
I 2

θ2k : G2 → G such that

for any (i, k) ∈ I1 × I2, we have θ2kµ2k = µikθ2.

Now the morphisms σ1iµ1i : H1 → H1i → G1i are also compatible and they induce the

continuous homomorphism σ1 : H1 → G1 such that, for any i ∈ I1, σ1iµ1i = µ1iσ1.

We see that σ1 is injective. Indeed, for all x, y ∈ H1 and i ∈ I1, if σ1(x) = σ1(y), then

µ1iσ1(x) = µ1iσ1(y). Hence σ1iµ1i(x) = σ1iµ1i(y). Since the σ1i are embeddings, we have

µ1i(x) = µ1i(y) for any i ∈ I1, where µ1i(x) is the i-th component of x. Consequently x = y.

Similarly we can define another continuous and injective homomorphism σ2 : H2 → G2 such

that σ2kµ2k = µ2kσ2. Then using the definitions of θ1, θ2, σ1 and σ2, we obtain the following

equalities

µikθ1σ1 = θ1iσ1iµ1i and µikθ2σ2 = θ2kσ2kµ2k, for all (i, k) ∈ I1 × I2 (⋆)
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Now to prove the lemma, it’s enough to prove that (G, θ1, θ2) is the free profinite product of

the profinite groups G1 and G2 with commuting subgroups H1 and H2.

First we have [θ1σ1(H1), θ2σ2(H2)] = 1. Indeed, for any (h1, h2) ∈ H1 ×H2 and (i, k) ∈ I1 × I2,

since µ1i(h1) ∈ H1i and µ2k(h2) ∈ H2k and since

(
G1i

⨿
[H1i,H2k]

G2k, θ1i, θ2k

)
is the free profinite

product of the profinite groups G1i and G2k with commuting subgroups H1i and H2k, then

using equalities (⋆), we have

[µikθ1σ1(h1), µikθ2σ2(h2)] = 1, i.e. [θ1iσ1iµ1i(h1), θ2kσ2kµ2k(h2)] = 1.

thus [θ1σ1(H1), θ2σ2(H2)] = 1.

Finally, consider a finite and discrete group G′. Let φ1 : G1 → G′ and φ2 : G2 → G′ be

continuous homomorphisms such that [φ1σ1(H1), φ2σ2(H2)] = 1. Since G1 = lim←−
I 1

G1i,

from lemma 1.1.16 in [15], there exist j ∈ I1 and a continuous homomorphism φ1j : G1j → G′

such that φ1jµ1j = φ1. Similarly since G2 = lim←−
I 2

G2k, there exist r ∈ I2 and a continuous

homomorphism φ2r : G2r → G′ such that φ2rµ2r = φ2. Recall that [φ1σ1(H1), φ2σ2(H2)] = 1.

So [φ1jµ1jσ1(H1), φ2rµ2rσ2(H2)] = 1. Since µ1jσ1 = σ1jµ1j and µ2rσ2 = σ2rµ2r, we obtain

[φ1jσ1jµ1j(H1), φ2rσ2rµ2r(H2)] = 1. Recall also that µ1j(H1) = H1j and µ2r(H2) = H2r. Then

[φ1jσ1j(H1j), φ2rσ2r(H2r)] = 1. By the definition of G1j
⨿

[H1j ,H2r]

G2r, there exists a continuous

homomorphism φjr : G1j
⨿

[H1j ,H2r]

G2r → G′ such that φ1j = φjrθ1j and φ2r = φjrθ2r. Let

φ = φjrµjr : G → G′. We have φθ1 = φjrµjrθ1 = φjrθ1jµ1j = φ1jµ1j = φ1. Similarly we have

φθ2 = φ2. Consequently (G, θ1, θ2) is the free profinite product of the profinite groups G1 and

G2 with commuting subgroups H1 and H2.

□

4.3. Proof of Theorem 1.3. We suppose conditions a. and b. are satisfied. We need to prove that

Â
⨿

[Ĥ,K̂]

B̂ is the profinite completion of the group A
⨿

[H,K]

B. We use proposition 4.1.

So, by the definition of Â
⨿

[Ĥ,K̂]

B̂, put i
Ĥ

: Ĥ → Â, i
K̂

: K̂ → B̂, i
Â
: Â→ Â

⨿
[Ĥ,K̂]

B̂ and

i
B̂

: B̂ → Â
⨿

[Ĥ,K̂]

B̂ the canonical continuous homomorphisms. Then [i
Â
i
Ĥ
(Ĥ), i

B̂
i
K̂
(K̂)] = 1. Let

groups A, B, H, K, [H,K] and A ⋆
[H,K]

B be endowed with the profinite topology. Define the following

canonical continuous homomorphisms: σ : H → A, τ : K → B, iA : A→ A
⨿

[H,K]

B and

iB : B → A
⨿

[H,K]

B. We then have [iAσ(H), iBτ(K)] = 1. Now consider the following canonical conti-

nuous homomorphisms lH : H → Ĥ, lK : K → K̂, lA : A → Â and lB : B → B̂. Since Ĥ and K̂ are

the profinite completions of H and K respectively, by the universal property, i
Ĥ

and i
K̂

are the unique

continuous homomorphisms such that i
Ĥ
lH = lAσ and i

K̂
lK = lBτ . Hence [i

Â
lAσ(H), i

B̂
lBτ(K)] =

[i
Â
i
Ĥ
lH(H), i

B̂
i
K̂
lK(K)] = 1, since [i

Â
i
Ĥ
(Ĥ), i

B̂
i
K̂
(K̂)] = 1, lH(H) ≤ Ĥ and lK(K) ≤ K̂. Thus by
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the definition of A ⋆
[H,K]

B, there exists a group homomorphism ψ : A ⋆
[H,K]

B → Â
⨿

[Ĥ,K̂]

B̂ such that

i
Â
lA = ψiA and i

B̂
lB = ψiB. Consequently the following diagram commutes

H

lH

����
��
��
��
��
��
��
��
��

σ

��

K

τ

��

lK

��=
==

==
==

==
==

==
==

==
=

Ĥ

i
Ĥ

��:
::

::
::

::
::

::
::

::
::

A
iA //

lA

��

A ⋆
[H,K]

B

ψ

��

B
iBoo

lB

��

K̂

i
K̂

����
��
��
��
��
��
��
��
��
�

Â
i
Â // Â

⨿
[Ĥ,K̂]

B̂ B̂
i
B̂oo

Recall that the maps i
Â
, lA, iB̂, lB, iA and iB are continuous. So, the homomorphism ψ is continuous.

1. Let us prove that ψ

(
A ⋆

[H,K]
B

)
is a dense subgroup of Â

⨿
[Ĥ,K̂]

B̂. From the previous lemma

4.3, we have

Â
⨿

[Ĥ,K̂]

B̂ ∼= lim←−−−−−−
NA×NB

A/Ui ⨿
[HUi/Ui,KVk/Vk]

B/Vk


where Â = lim←−−−−−

Ui∈NA
A/Ui, B̂ = lim←−−−−−

Vk∈NB
B/Vk, Ĥ = lim←−−−−−

Ui∈NA
H/(Ui ∩ H), K̂ = lim←−−−−−

Vk∈NB
K/(Vk ∩ K) and(

A/Ui
⨿

[HUi/Ui,KVk/Vk]

B/Vk, ψik,jr,≤

)
is a projective system of profinite groups, NA and NB are the

collection of all normal subgroups of finite index of groups A and B respectively, and the order ≤ is

defined on NA ×NB by: (Ui, Vk) ≤ (Uj , Vr) if and only if Uj ≤ Ui in NA and Vr ≤ Vk in NB (i, k, j, r

are natural numbers), and ψik,jr : A/Uj
⨿

[HUj/Uj ,KVr/Vr]

B/Vr → A/Ui
⨿

[HUi/Ui,KVk/Vk]

B/Vk is a continuous

homomorphism for (Ui, Vk) ≤ (Uj , Vr) in NA ×NB.
Now for any (Ui, Vk) ∈ NA×NB, A/Ui

⨿
[HUi/Ui,KVk/Vk]

B/Vk is the free profinite product of the finite (thus

profinite) groups A/Ui and B/Vk with commuting subgroups HUi/Ui and KVk/Vk. In the cartesian

product

P =
∏

(Ui,Vk)∈NA×NB

A/Ui ⨿
[HUi/Ui,KVk/Vk]

B/Vk


the open sets are unions of intersections of sets of the form ∏

(s.t)∈I0×K0

(Sis,kt)

×

 ∏
(i,k)/∈I0×K0

A/Ui ⨿
[HUi/Ui,KVk/Vk]

B/Vk
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where Sis,kt is an open subset of A/Uis
⨿

[HUis/Uis ,KVkt/Vkt ]

B/Vkt and, I0 and K0 are finite sets of positive

integers. Now since lim←−−−−−−NA×NB

(
A/Ui

⨿
[HUi/Ui,KVk/Vk]

B/Vk

)
is a subset of P , then by the induced topology,

every open subset in lim←−−−−−−
NA×NB

(
A/Ui

⨿
[HUi/Ui,KVk/Vk]

B/Vk

)
has the form

 lim←−−−−−−
NA×NB

A/Ui ⨿
[HUi/Ui,KVk/Vk]

B/Vk

∩O, where O is an open set in P.

Now take I0 = {i1, . . . , in} and K0 = {k1, . . . , km} be finite subsets of N and let V be a non empty

open subset in lim←−−−−−−NA×NB

(
A/Ui

⨿
[HUi/Ui,KVk/Vk]

B/Vk

)
. Then V has the form

V = lim←−−−−−−NA×NB

A/Ui ⨿
[HUi/Ui,KVk/Vk]

B/Vk

∩
 ∏

(s.t)∈{1,...,n}×{1,...,m}

(Sis,kt)

×

 ∏
(i,k)/∈I0×K0

A/Ui ⨿
[HUi/Ui,KVk/Vk]

B/Vk


where the Sis,kt are finite subsets of A/Uis

⨿
[HUis/Uis ,KVkt/Vkt ]

B/Vkt with (s, t) ∈ {1, . . . , n}×{1, . . . ,m}.

Then ψ

(
A ⋆

[H,K]
B

)∩
V ̸= ∅. Indeed, let x ∈ A ⋆

[H,K]
B. Choose i0 ≥ i1, . . . , in and k0 ≥ k1, . . . , km

such that ψi0k0(ψ(x)) = (xi0 , yk0) where the ψik : Â
⨿

[Ĥ,K̂]

B̂ → A/Ui
⨿

[HUi/Ui,KVk/Vk]

B/Vk are projections.

Then, ψ(x) ∈ V , since the following diagram commutes

A/Ui0
⨿

[HUi0
/Ui0

,KVk0/Vk0 ]

B/Vk0

ψi0k0,iskt

��

A ⋆
[H,K]

B
ψ

// Â
⨿

[Ĥ,K̂]

B̂

ψi0k0 55kkkkkkkkkkkkkkkk

ψiskt

))SSS
SSSS

SSSS
SSSS

SSSS
SSSS

A/Uis
⨿

[HUis/Uis ,KVkt/Vkt ]

B/Vkt

2. Let us prove the universal property. Let φ : A ⋆
[H,K]

B → G′ be a continuous homomorphism,

where G′ is a finite and discrete group. Consider U = {U,U ◁0 G
′}, the collection of all normal open

subgroups of group G′. For each U ∈ U , let NU = φ−1(U); then the morphisms

φU : Â
⨿

[Ĥ,K̂]

B̂ → A ⋆
[H,K]

B/NU → G′/U are compatible. They induce a continuous homomorphism
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φ̄ : Â
⨿

[Ĥ,K̂]

B̂ → lim←−−−
U∈U

G′/U = G′ such that for any U ∈ U , we have φU = qU φ̄, and qUφ = φUψ as shown

on the following commutative diagram

A ⋆
[H,K]

B

φ

##F
FF

FF
FF

FF
FF

FF
FF

FF
FF

ψ
// Â

⨿
[Ĥ,K̂]

B̂

φ̄

��

G′/U
==

qU

zz
zz
zz
zz
zz
zz
zz
zz
zz
zz
//

φU

G′

Now φ = φ̄ψ. Indeed, take x ∈ A ⋆
[H,K]

B. Then qUφ(x) = φUψ(x). Therefore qUφ(x) = qU φ̄ψ(x) for

all x ∈ A ⋆
[H,K]

B and any U ∈ U . Thus φ = φ̄ψ. The uniqueness of φ̄ is obtained from the fact that

Â
⨿

[Ĥ,K̂]

B̂ =
⟨
i
Â
lA(A), iB̂lB(B)

⟩
.
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