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Abstract. The commutativity degree, Pr(G), of a finite group G (i.e. the probability that two (ran-

domly chosen) elements of G commute with respect to its operation)) has been studied well by many

authors. It is well-known that the best upper bound for Pr(G) is 5
8
for a finite non–abelian group G.

In this paper, we will define the same concept for a finite non–abelian Moufang loop M and try to

give a best upper bound for Pr(M). We will prove that for a well-known class of finite Moufang loops,

named Chein loops, and its modifications, this best upper bound is 23
32
. So, our conjecture is that for

any finite Moufang loop M , Pr(M) ≤ 23
32
.

Also, we will obtain some results related to the Pr(M) and ask the similar questions raised and an-

swered in group theory about the relations between the structure of a finite group and its commutativity

degree in finite Moufang loops.

1. Introduction

A set Q with one binary operation is a quasigroup if the equation xy = z has a unique solution in

Q whenever two of the three elements x, y, z ∈ Q are specified. A loop is a quasigroup with a neutral

element 1 satisfying 1x = x1 = x for every x. Moufang loops are loops in which any of the (equivalent)

Moufang identities ((xy)x)z = x(y(xz)), x(y(zy)) = ((xy)z)y, (xy)(zx) = x((yz)x), (xy)(zx) =

(x(yz))x holds.

Moufang loops are certainly the most studied loops. They arise naturally in algebra (as the multi-

plicative loop of octonions , and in projective geometry (Moufang planes)). Although Moufang loops

are generally non–associative, they retain many properties of groups that we know and love. For

instance: (i) every x is accompanied by its two-sided inverse x−1 such that xx−1 = x−1x = 1, (ii)
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any two elements generate a subgroup (this property is called diassociativity), (iii) in finite Moufang

loops, the order of an element divides the order of the loop, and, as has been shown recently in [12],

the order of a subloop divides the order of the loop, (iv) every finite Moufang loop of odd order is

solvable. Also, there are Sylow and Hall theorems for finite Moufang loops. For more details see

[2, 20, 8, 12, 13].

On the other hand, many essential tools of group theory are not available for Moufang loops.

The lack of associativity makes presentations very awkward and hard to calculate, and permutation

representations in the usual sense impossible.

Let A be a finite algebraic structure with at least one binary operation like as “·”. Then, one may

ask: What is the probability that two (randomly chosen) elements of A commute (with respect to the

operation “·”)? A formal answer is

Pr(A) =
| {(x, y) ∈ A2 | xy = yx} |

| A2 |
.

For a finite group A it is proved that Pr(A) = k(A)
|A| , where, k(A) is the number of conjugacy classes of A

(see [11, 16, 14] for example). The computational results on Pr(A) are mainly due to Gustafson [11]

who shows that Pr(A) ⩽ 5
8 for a finite non–abelian group A, and MacHale [16] who proves this

inequality for a finite non–abelian ring. Also, the author of this paper and his colleagues have shown

in [1] that the 5
8 is not an upper bound for Pr(A), where A is a finite non–abelian semigroup and/or

monoid.

Now, let M be a finite non–abelian Moufang loop. In this paper, we will ask the same question for

M and try to give a best upper bound for Pr(M). Also, we will obtain some results related to the

Pr(M) and ask the similar questions raised and answered in group theory about the relations between

the structure of a finite group and its commutativity degree in finite Moufang loops.

2. On the Classification of Moufang loops

To use in the next section, here we summarize the spectrum of Moufang loops: For which orders n

is there a non–associative Moufang loop?

The following Theorem has been proved by Chein and Rajah in [5] and makes an important corollary.

Theorem 2.1. [5, Theorem 2.2]. Every Moufang loop L of order 2m, m odd, which contains a normal

abelian subgroup M of order m is a group. □

We can now settle the question of for which values of n = 2m must every Moufang loop of order n

be a group.

Corollary 2.2. [5, Corollary 2.3]. Every Moufang loop of order 2m is associative if and only if every

group of order m is abelian. □

So, by the above corollary, a non–associative Moufang loop of order 2m exists if and only if a

non–abelian group of order m exists. Hence, a non–associative Moufang loop of order 2k exists if and
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only if k > 3, and for every odd m > 1 there is a non–associative Moufang loop of order 4m. Here is

the case 2m, m odd:

Theorem 2.3. [5, Corollary 2.4]. Every Moufang loop of order 2m, m > 1 odd, is associative if and

only if m = pα1
1 · · · pαk

k , where p1 < · · · < pk are odd primes and where

(i) αi ≤ 2, for all i = 1, . . . , k,

(ii) pj ̸≡ 1 (mod pi), for any i and j,

(iii) p2j ̸≡ 1 (mod pi), for any i and j with αj = 2.

□

Concerning odd orders, we have:

Theorem 2.4. [15, Theorems 1 and 2]. Every Moufang loop of order pαqα1
1 · · · qαk

k is associative if

p < q1 < · · · < qk are odd primes, and if one of the following conditions holds:

(i) α ≤ 3 and αi ≤ 2, for all i = 1, . . . , k,

(ii) p ≥ 5, α ≤ 4 and αi ≤ 2, for all i = 1, . . . , k.

□

So, by above theorems, for any prime p, none of the Moufang loops of order p, p2, p3 are non–

associative; none of the Moufang loops of order p4 are non–associative unless p = 2, 3. By Theorem 2.3,

for odd primes p < q a non–associative Moufang loop of order pq3 exists if and only if q ≡ 1 (mod p).

In [10] and [18], Goodaire, May, Raman, Nagy and Vojtěchovský classified all non–associative Moufang

loops of order 34 = 81 and 64. They proved that there are 4262 pairwise nonisomorphic non–associative

Moufang loops of order 64, and there are 5 pairwise nonisomorphic non–associative Moufang loops of

order 81, 2 of which are commutative. All 5 of these loops are isotopes of the 2 commutative ones.

In [17], Nagy and Valsecchi have shown that there are precisely 4 non–associative Moufang loops of

order p5 for every prime p ≥ 5. Finally, Slattery and Zenisek classified all non–associative Moufang

loops of order 243 in [21] So, the classification of non–associative Moufang loops of order p4 and p5 is

now complete. Much more is known but the problem is open in general.

Table 1 gives the number of pairwise nonisomorphic non–associative Moufang loops of order n for

every 1 ≤ n ≤ 64 and n = 81, 243 for which at least one non–associative Moufang loop exists.

3. Commutativity degree in some classes of Moufang loops

There is a class of non–associative Moufang loops, first defined by Chein [3], that is well understood.

Let G be a group of order n, and let u be a new element. Define multiplication ◦ on G ∪ Gu by

g ◦ h = gh, g ◦ hu = (hg)u, gu ◦ h = (gh−1)u, gu ◦ hu = h−1g, where g, h ∈ G. The resulting loop

(G ∪Gu, ◦) = M(G, 2) is a Moufang loop. It is non–associative if and only if G is non–abelian.

Let π(m) be the number of isomorphism types of non–associative Moufang loops of order at most

m, and let σ(m) be the number of non–associative loops of the form M(G, 2) of order at most m.

Then, according to Chein’s classification [4], π(31) = 13, σ(31) = 8, π(63) = 158, σ(63) = 50. This
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Table 1. The number M(n) of non–associative Moufang loops of order n.

n 12 16 20 24 28 32 36 40 42

M(n) 1 5 1 5 1 71 4 5 1

n 44 48 52 54 56 60 64 81 243

M(n) 1 51 1 2 4 5 4262 5 72

demonstrates eloquently the abundance of loops of type M(G, 2) among Moufang loops of small order,

and chiefly thanks to this fact, they play a prominent role in the classification of Moufang loops. It

has been proved that M(G, 2) is isomorphic to M(H, 2) if and only if G is isomorphic to H. Thus, we

obtain as many non–associative Moufang loops of order 2n as there are non–abelian groups of order

n.

Lemma 3.1. In every Moufang loop M(G, 2), we have ∀g, h ∈ G:

(i) gu ◦ h = h ◦ gu if and only if h2 = 1;

(ii) gu ◦ hu = hu ◦ gu if and only if (g−1h)2 = 1.

Also, if gh = hg then gu ◦ hu = hu ◦ gu if and only if g2 = h2.

Proof. The proof is clear by the definition of M(G, 2). □

By the above lemma, only the trivial element 1 and the elements of order 2 in G are commutative

with all of the elements of Gu and so we have the following formula for the commutativity degree of

M(G, 2):

Theorem 3.2. Let G be a finite group, t be the number of involutions of G and k(G) be the number

of conjugacy classes of G. Then the commutativity degree of M(G, 2) is:

Pr(M(G, 2)) =
k(G) + 3(t+ 1)

4|G|
.

If the order of G is odd, then the formula will be simply:

Pr(M(G, 2)) =
k(G) + 3

4|G|
.

Proof. Let S = {(x, y) ∈ M(G, 2)×M(G, 2) | xy = yx}. Consider the multiplication table of M(G, 2).

It will be like the following:

· G Gu

G G ◦G G ◦Gu

Gu Gu ◦G Gu ◦Gu
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In G◦G part of the table, there are precisely k(G)|G| distinct ordered pairs in S and since there are

t+1 columns in Gu ◦G with x2 = 1 in G and t+1 rows in G ◦Gu with x2 = 1 in G (corresponding to

identity element and involutions in M(G, 2)), so by Lemma 3.1(i), there are (t + 1)|G| distinct pairs
in S in each case. Also, by Lemma 3.1(ii), there are (t+ 1)|G| distinct ordered pairs (g, h) in S such

that (g−1h)2 = 1. So, we obtain:

Pr(M(G, 2)) =
k(G)|G|+ 3(t+ 1)|G|

4|G|2
=

k(G) + 3(t+ 1)

4|G|
.

□

Example 3.1. The following formula for the commutativity degree of finite dihedral groups is well-

known:

Pr(D2m) =

{
m+6
4m , ∀m even
m+3
4m , ∀m odd.

Also, we know that the class number and number of involutions of D2m are as follows:

k(D2m) =

{
m
2 + 3, ∀m even
m+3
2 , ∀m odd.

t =

{
m+ 1, ∀m even

m, ∀m odd.

Hence, by Theorem 3.2 we have:

Pr(M(D2m, 2)) =

{ m
2
+3+3(m+2)

8m , ∀m even
m+3

2
+3(m+1)

8m , ∀m odd.

From the theorem above we have the following fact:

Corollary 3.3. If G is a group of even order and both of G and M(G, 2) are abelian then they are

both elementary abelian. Also, for every non-trivial group G of odd order, M(G, 2) is non–abelian.

Proof. If both of G and M(G, 2) are abelian then M(G, 2) is associative and so is a group and we

have by the above theorem:

Pr(M(G, 2)) =
k(G) + 3(t+ 1)

4|G|
=

|G|+ 3(t+ 1)

4|G|
= 1

⇐⇒ 4|G| = |G|+ 3(t+ 1)

⇐⇒ t = |G| − 1,

where t is the number of involutions of G. So, all of the non-trivial elements of G are involutions and

G is an elementary abelian 2-group. Therefore, M(G, 2) is elementary abelian too.

Now, let M(G, 2) be abelian, where G is of odd order. Then we have:

Pr(M(G, 2)) =
k(G) + 3(t+ 1)

4|G|
=

|G|+ 3

4|G|
= 1 ⇔ |G| = 1

⇔ |M(G, 2)| = 2,

a contradiction. So, M(G, 2) must be non–abelian, as required. □
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One of the first exercises in group theory is that a group in which all nonidentity elements have

order two (so-called involutions) is abelian. An almost equally easy exercise states that a finite group

is abelian if at least 3
4 of its elements have order two. This cannot be improved, as the dihedral group

of order eight, as well as its direct product with any elementary abelian group, provides examples of

groups in which the number of involutions is strictly less than 3
4 of the group order. However, it is

known that groups in which many elements are involutions are not far from being abelian. So, by

these considerations and Theorem 3.2 one can obtain the next result about the best upper bound for

Pr(M(G, 2)).

Corollary 3.4. For every finite non–abelian group G, the commutativity degree of M(G, 2) is less

than or equal to 23
32 = 0.71875. Also, this is the best upper bound for Pr(M(G, 2)).

Proof. Let G be a non–abelian group. Since G has at most 5
8 |G| conjugacy classes and less than 3

4 |G|
involutions then:

Pr(M(G, 2)) =
k(G) + 3(t+ 1)

4|G|
≤

5

8
|G|+ 3 · 3

4
|G|

4|G|
=

23

32
.

Now, we can reach the upper bound 23
32 by M(D8, 2) where, D8 is the dihedral group of order 8. □

Remark 3.5. If G be an abelian finite group, then by the above results Pr(M(G, 2)) = 1 if and only

if G is elementary abelian. Also, if G is a finite abelian but non-elementary group then M(G, 2)) is a

group and so

Pr(M(G, 2)) ≤ 5

8
.

On the other hand, the above result shows that the 5
8 = 0.625 law for finite groups and rings does

not hold for finite Moufang loops. The next question is: ”Does the upper bound 23
32 hold for every finite

Moufang loop?” The calculations with some GAP [9] codes (using LOOPS Package [19]), confirms

this as follows in the next section. So we try other classes of finite Moufang loops.

Remark 3.6. If M1 and M2 are two finite Moufang loops, then

Pr(M1 ×M2) = Pr(M1)× Pr(M2).

Particularly, if G be a finite group, then

Pr(M1 ×G) = Pr(M1)× Pr(G).

Also, let G be a finite abelian group and M be a finite non–associative Moufang loop. Then M × G

will be a non–associative Moufang loop and we have:

Pr(M ×G) = Pr(M)× Pr(G) = Pr(M).

Therefore, for all finite Moufang loops M = M(H, 2), (where H is any finit group); and all finite

abelian groups G we obtain:

Pr(M ×G) = Pr(M) ≤ 23

32
.
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Let K, A be loops. Then a loop Q is an extension of K by A if A is a normal subloop of Q such

that Q/A is isomorphic to K. An extension Q of K by A is central if A is a subloop of Z(Q). Every

Moufang loop M of order pk+1, p a prime, is a central extension of a Moufang loop K of order pk by

the p−element field Fp.

For a finite group G and its normal subgroup N , it is well-known that k(G) ≤ k(N) · k(G/N) and

so,

Pr(G) ≤ Pr(N) · Pr(G/N).

Also, for any subgroup H of G, we always have Pr(G) ≤ Pr(H) ≤ |G : H|2 · Pr(G). But, we don’t

have these tools in Moufang loops and can only say that:

Proposition 3.7. For any finite Moufang loop M and its normal subloop N , Pr(M) ≤ Pr(M/N).

Also, for any finite group G and its subgroup H, L = M(H, 2) is a subloop of M = M(G, 2) with

|M |/|L| = |G : H|, and if G is of odd order then:

Pr(M) ≤ Pr(L) ≤ |M |2

|L|2
· Pr(M).

Proof. The proof of the first part is straightforward. Now, by Theorem 3.2, we have

Pr(M) =
k(G) + 3

4|G|
≤ |G : H| · k(H) + 3

4|G|
=

|G : H|(k(H) + 3)

4|G|
+

3(1− |G : H|)
4|G|

= Pr(L) +
3(1− |G : H|)

4|G|
.

So, Pr(M) ≤ Pr(L). Again,

Pr(M) =
k(G) + 3

4|G|

≥ k(H) · |G : H|−1 + 3

4|G|
=

k(H)

4|H||G : H|2
+

3

4|G|
=

k(H) + 3

4|H||G : H|2
− 3

4|H||G : H|2
+

3

4|G|
=

Pr(L)

|G : H|2
+

3

4|G|
· |G : H| − 1

|G : H|
≥ Pr(L)

|G : H|2

=
Pr(L) · |L|2

|M |2
.

□

Example 3.2. In the above proposition, if G is of even order the result is not true: Let G = S3 and

H = A3 (symmetric group of degree 3 and its alternating subgroup). Then if we set M = M(G, 2) and
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L = M(H, 2), we obtain Pr(M) = 3+3(1+3)
4·6 = 5

8 , but Pr(L) = 3+3(1+0)
4·3 = 1

2 , and so, Pr(M) > Pr(L).

Also, G is a normal subloop of M and Pr(M) > Pr(G) · Pr(MG ) = 1
2 · 1 = 1

2 .

By the above facts, we obtain the following corollary:

Corollary 3.8. Let M be a Moufang loop M of order pk+1, p a prime, which is the central extension

of a Moufang loop K of order pk by the p−element field Fp. Then Pr(M) ≤ Pr(K). □

While working on the problem of Hamming distances of groups [6], Drápal discovered two construc-

tions, named central and dihedral modifications, that modify exactly one quarter of the multiplication

table of a group and yield another group, often with a different center and thus not isomorphic to

the original group. These constructions work for Moufang loops, too, and have been called Moufang

modifications. Let us first give a brief description of the constructions (see [7] for more details):

Definition 3.9. Assume that L is a Moufang loop with normal subloop S such that L/S is a cyclic

group of order 2m. Let h ∈ S ∩ Z(L). Let α be a generator of L/S and write L =
∪

i∈M αi, where

M = {−m + 1, . . . ,m}. Let σ : M → Z; be defined by σ(i) = 0 if i ∈ M , σ(i) = 1 if i > m, and

σ(i) = −1 if i < −m + 1. Introduce a new multiplication ∗ on L defined by x ∗ y = xyhσ(i+j), where

x ∈ αi, y ∈ αj, i, j ∈ M . Then (L, ∗) is a Moufang loop, called a cyclic modification of L.

Now assume that L is a Moufang loop with normal subloop S such that L/S is a dihedral group of

order 4m, with m ≥ 1. Let M and σ be defined as in the cyclic case. Let β, γ ∈ L/S be two involutions

of L/S such that α = βγ generates a cyclic subgroup of L/S of order 2m. Let e ∈ β and f ∈ γ be

arbitrary. Then L can be written as a disjoint union L =
∪

i∈M αi ∪ eαi and also L =
∪

i∈M αi ∪ αif .

Let G0 =
∪

i∈M αi, and G1 = L \G0. Let h ∈ S ∩N(L)∩Z(G0). Introduce a new multiplication ∗ on

L defined by x ∗ y = xyh(−1)rσ(i+j), where x ∈ αi ∪ eαi, y ∈ αj ∪ αjf , i, j ∈ M , y ∈ Gr, r ∈ {0, 1}.
Then (L, ∗) is a Moufang loop, called a dihedral modification of L.

It turns out that these extensions can be used to obtain all non–associative Moufang loops of order

at most 64, [7]. In fact, to apply the cyclic and dihedral modifications, it is beneficial to have access to

a class of non–associative Moufang loops. Vojtěchovský uses these modifications on non–associative

Moufang loops of the form M(G, 2) to get all non–associative Moufang loops of order 64 and then

Nagy and Vojtěchovský in [18] prove by central extention that there are no other non–associative

Moufang loops of this order.

The structures of Moufang modifications lead us to the following result about their commutativity

degree:

Corollary 3.10. Let (L, ·) be a Moufang loop and let (L, ∗) be obtained from (L, ·) by the cyclic or

the dihedral construction. Then:

Pr((L, ∗)) = Pr((L, ·)).

Proof. By the definition of Moufang modifications, for every x, y ∈ L, the commutator [x, y] = 1 in

(L, ∗) if and only if [x, y] = 1 in (L, ·). □
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4. Computations of commutativity degree in finite Moufang loops

Table 2 shows the commutativity degrees of non–associative Moufang loops of order n up to 64,

n = 81 and n = 243. They have been calculated by GAP codes, [9].

Table 2. Commutativity degree of Moufang loops of order n less than or equal to 64

and n = 81, 243.

non–associative Moufang loop M(m,n) Pr(M(m,n)

M(12, 1) 5
8

M(16, n), 1 ≤ n ≤ 5 (res.) 23
32 ,

11
32 ,

11
32 ,

23
32 ,

23
32

M(20, 1) 11
20

M(24,m), 1 ≤ m ≤ 5 (res.) 5
8 ,

1
3 ,

1
4 ,

5
8 ,

1
4

M(28, 1) 29
56

M(32, n), 1 ≤ n ≤ 71 13
64 ,

11
32 ,

25
64 ,

7
16 ,

17
32 ,

37
64 ,

5
8 ,

23
32

M(36, n), 1 ≤ n ≤ 4 (res.) 7
24 ,

1
2 ,

1
2 ,

5
8

M(40, n), 1 ≤ n ≤ 5 (res.) 11
20 ,

7
40 ,

23
80 ,

11
20 ,

7
40

M(42, 1) 2
21

M(44, 1) 43
88

M(48,m), 1 ≤ m ≤ 51 13
96 ,

5
32 ,

3
16 ,

7
32 ,

1
4 ,

1
3 ,

11
32

35
96 ,

3
8 ,

13
32 ,

17
32 ,

5
8 ,

23
32

M(52, 1) 25
52

M(54, n), 1 ≤ n ≤ 2 (res.) 7
54 ,

7
54

M(56, n), 1 ≤ n ≤ 4 (res.) 29
56 ,

1
7 ,

29
56 ,

1
7

M(60, n), 1 ≤ n ≤ 5 (res.) 1
4 ,

9
40 ,

19
40 ,

11
20 ,

5
8

M(64,m), 1 ≤ m ≤ 4262 17
128 ,

23
128 ,

13
64 ,

29
128 ,

1
4 ,

35
128 ,

19
64 ,

41
128 ,

11
32 ,

47
128 ,

25
64 ,

53
128 ,

7
16 ,

59
128 ,

31
64 ,

65
128 ,

17
32 ,

71
128 ,

37
64 ,

77
128 ,

5
8 ,

83
128 ,

23
32

M(81, n), 1 ≤ n ≤ 5 (res.) 1, 1, 1127 ,
11
27 ,

11
27

M(243,m), 1 ≤ m ≤ 72 1, 1127 ,
17
81 ,

35
243 ,

83
243
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5. Conclusion and commutativity degree in other classes of loops

We conclude that the set of commutativity degrees of all non–associative Moufang loops of order 64

is equal to the set of commutativity degrees of all non–associative Moufang loops of the form M(G, 2),

where G is a non–abelian group of order 32. Of course, we can not generalize it to all finite Moufang

loops, i.e. for a positive integer n, we may not construct all finite Moufang loops of order n by cyclic

or dihedral modifications and these constructions do not apply for all n. But by the above results and

considerations, it is more likely that 23
32 may be the best upper bound for the commutativity degree

of all finite Moufang loops. So, we state the following conjecture:

Conjecture. Let M be a finite non–commutative Moufang loop. Then Pr(M) ≤ 23
32 .

On the other hand, calculations by GAP codes, [9], show that the upper bound 23
32 is not valid

for some other classes of finite loops, such as CC−loops, Bol loops, nilpotent loops (which are not

Moufang). For example, there are three CC−loops of order 9 with commutativity degree 7
9 , there are

some left Bol loops of order 16 with commutativity degree 7
8 , there are some nilpotent loops of order

8 with commutativity degree 7
8 and nilpotent loops of order 10 with commutativity degree 23

25 .

Finally, some problems like those that have been answered about commutativity degree in finite

groups arise for Moufang loops, like as:

The structure of finite groups with commutativity degree ≥ 1
2 has been characterized by Lescot in

1995 [14]. Also, we know that if for a finite group G, Pr(G) = 5/8, then G is nilpotent.

Question 1: Can we determine the structure of a given finite Moufang loop by its commutativity

degree (such as nilpotency, solvability, simplicity and so on)?

If G is a non–abelian finite simple group, then Pr(G) ≤ 1/12, with equality for the alternating

group of degree 5, A5.

Question 2: Is there a similar upper bound for a non–abelian finite simple Moufang loop? (For

example, the commutativity degree of the Paige loop of order 120, which is simple, is 4/25.)

It is well-known that there are no finite groups G such that 7
16 < Pr(G) < 1

2 (see [11] or [16]). So,

one may ask:

Question 3: Can we derive a similar result in finite Moufang loops?
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