Intersections of prefrattini subgroups in finite soluble groups

Document Type : Research Paper


Gomel Branch of International University MITSO


‎Let $H$ be a prefrattini subgroup of a soluble finite group $G$‎. ‎In the‎ ‎paper it is proved that there exist elements $x,y \in G$ such that the equality‎ ‎$H \cap H^x \cap H^y = \Phi (G)$ holds‎.


Main Subjects

[1] K. Doerk and T. Hawkes, Finite soluble groups, de Gruyter Expositions in Mathematics, 4, Walter de Gruyter MGmbH & Co., Berlin, 1992.
[2] S. F. Kamornikov and L. A. Shemetkov, On the normalizer of a Gaschütz system of a finite soluble group, (Russian), translation in: J. Math. Sci., 166 (2010) 655–660.
[3] D. S. Passman, Groups with normal solvable Hall p′-subgroups, Trans. Amer. Math. Soc., 123 (1966) 99–111.
[4] V. I. Zenkov, Intersections of nilpotent subgroups in finite groups, (in Russian) Fundam. Prikl. Mat., 2 (1996) 1–92.
[5] S. Dolfi, Intersections of odd order Hall subgroups, Bull. London Math. Soc., 37 (2005) 61–66.
[6] S. Dolfi, Large orbits in coprime actions of solvable groups, Trans. Amer. Math. Soc., 360 (2008) 135–152.
[7] E. P. Vdovin, Regular orbits of solvable linear p′-groups, Sib. Elektron. Mat. Izv., 4 (2007) 345–360.
[8] V. D. Mazurov and E. I. Khukhro, Unsolved problems in group theory: The Kourovka Notebook, Russian Academy of Sciences, Siberian Branch, Institute of Mathematics, Novosibirsk, Russia, 2010.
[9] W. Gaschütz, Praefrattinigruppen, Arch. Math., 13 (1962) 418–426.