Converse of lagrange's theorem (CLT) numbers under 1000

Document Type : Research Paper

Author

University of Oregon

Abstract

A positive integer $n$ is called a CLT number if every group of order $n$ satisfies the converse of Lagrange's Theorem‎. ‎In this note‎, ‎we find all CLT and supersolvable numbers up to $1000$‎. ‎We also formulate some questions about the distribution of these numbers‎.

Keywords

Main Subjects


[1] T. R. Berger, A Converse to Lagrange’s Theorem, J. Aust. Math. Soc., 25 (1978) 291–313.
[2] J. Gallian, Contemporary Abstract Algebra, 7th ed, Brooks/Cole, Belmont, CA, 2010.
[3] G. Mackiw, The linear group SL(2,3) as a source of examples, Math. Gazette, (1997) 64–67.
[4] J. B. Nganou, How rare are subgroups of index 2?, Math. Mag, 85 (2012) 215-220.
[5] J. B. Nganou, The number of quadratic subfields, Irish Math. Soc. Bulletin, 73 (2014) 47–52.
[6] G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehÖren, Arch. Math., 10 (1959) 331–343.
[7] R. R. Struik, Partial Converses to Lagrange’s Theorem, Comm. Alg., 6 (1978) 412–482.
[8] R. R. Struik, Partial Converses to Lagrange’s Theorem II, Comm. Alg., 9 (1981) 1–22.