The aim of this paper is to classify the finite simple groups with the number of zeros at most seven greater than the number of nonlinear irreducible characters in the character tables. We find that they are exactly A$_{5}$, L$_{2}(7)$ and A$_{6}$.
Y. Berkovich and L. Kazarin (1998). Finite groups in which the zeros of
every nonlinear irreducible character are conjugate modulo its
kernel. Houston J. Math.. 24 (4), 619-630 R. T. Curtis, S. P. Norton, R. A. Park and R. A.
Wilson (1985). Atlas of Finite Groups. Oxford Univ. Press (Clarendon), New York. H. W. Deng and W. J. Shi (1997). A simplicity criterion for finite groups. J. Algebra. 191, 371-381 X. L. Du and W. J. Shi (2006). Finite groups with conjugacy classes number
one greater than its same order classes number. Comm. Algebra. 34, 1345-1359 T. L. Huang and W. J. Shi (1995). Finite groups all of whose element orders
are of prime power except one (in Chinese). J. of the Southwest
China Normal University. 20, 610-617 B. Huppert (1982). Finite Groups I. Springer, Heidelberg. B. Huppert and N. Blackburn (1982). Finite Groups III. Springer, Berlin. N. Iiyori and H. Yamaki (1993). Prime graph components of the simple groups
of Lie type over the field of even characteristic. J. Algebra. 155, 335-343 I. M. Isaacs (1976). Character Theory of Finite Groups. Academic Press, New York. A. Jafarzadeh and A. Iranmanesh (2007). On simple K$_{n}$-groups for $n=56$. Groups St Andrews 2005 Vol. 2 (Edited by C.M. Campbell, M. R.
Quick, E. F. Robertson and G. C. Smith), London Math. Soc. Lecture Note Ser. Cambridge Univ.. 340, 517-526 J. McKay (1979). The non-abelian simple groups $G$, $|G|< 10^{6}$-character
tables. Comm. Algebra. 7, 1407-1445 A. Moret$\acute{o}$ and J. Sangroniz (2004). On the number of conjugacy classes of
zeros of characters. Israel J. Math.. 142, 163-187 M. Suzuki (1962). On a class of doubly transitive groups. Ann. of
Math. (2). 75, 105-145 M. Suzuki (1961). Finite groups with nilpotent centralizers. Trans. Amer. Math. Soc.. 99, 425-470 A. Veralopez and J. Veralopez (1986). Classification of finite groups
according to the number of conjugacy classes II. Israel J. Math.. 56, 188-221 W. Willems (1988). Blocks of defect zero in finite simple groups. J. Algebra. 113, 511-522 J. S. Williams (1981). Prime graph components of finite groups. J. Algebra. 69, 487-513 J. S. Zhang, T. J. Shi and Z. C. Shen (2010). Finite groups in which every
irreducible character vanishes on at most three conjugacy classes. J. Group Theory. 13, 799-819
Zeng, G. (2012). Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters. International Journal of Group Theory, 1(4), 25-32. doi: 10.22108/ijgt.2012.1518
MLA
Guangju Zeng. "Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters". International Journal of Group Theory, 1, 4, 2012, 25-32. doi: 10.22108/ijgt.2012.1518
HARVARD
Zeng, G. (2012). 'Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters', International Journal of Group Theory, 1(4), pp. 25-32. doi: 10.22108/ijgt.2012.1518
VANCOUVER
Zeng, G. Finite simple groups with number of zeros slightly greater than the number of nonlinear irreducible characters. International Journal of Group Theory, 2012; 1(4): 25-32. doi: 10.22108/ijgt.2012.1518