Fischer matrices of Dempwolff group 25GL(5,2)

Document Type : Research Paper

Authors

1 Universities of KwaZulu-Natal and Khartoum

2 North-West University

Abstract

‎In [U‎. ‎Dempwolff‎, ‎On extensions of elementary abelian groups of order $2^{5}$ by $GL(5,2)$‎, ‎Rend‎. ‎Sem‎. ‎Mat‎. ‎Univ‎. ‎Padova‎, 48 (1972)‎ ‎359‎ - ‎364.] Dempwolff proved the existence of a group of the‎ ‎form $2^{5}{^{\cdot}}GL(5,2)$ (a non split extension of the‎ ‎elementary abelian group $2^{5}$ by the general linear group‎ ‎$GL(5,2)$)‎. ‎This group is the second largest maximal subgroup of the‎ ‎sporadic Thompson simple group $\mathrm{Th}.$ In this paper we‎ ‎calculate the Fischer matrices of Dempwolff group $\overline{G} =‎ ‎2^{5}{^{\cdot}}GL(5,2).$ The theory of projective characters is‎ ‎involved and we have computed the Schur multiplier together with a‎ ‎projective character table of an inertia factor group‎. ‎The full‎ ‎character table of $\overline{G}$ is then can be calculated easily‎.
 

Keywords

Main Subjects


F. Ali (2001). Fischer-Clifford Theory For Split and Non-Split Group Extensions. PhD Thesis, University of Natal, Pietermaritzburg. F. Ali and J. Moori (2003). The Fischer-Clifford matrices of a maximal subgroup of $Fi_{24}^{'}$. Journal of Representation Theory. 7, 300-321 R. W. Barraclough (2005). Some Calculations Related To The Monster Group. PhD Thesis, University of Birmingham, Birmingham. A. B. M. Basheer (2012). Clifford-Fischer Theory Applied to Certain Groups Associated with Symplectic, Unitary and Thompson Groups. PhD Thesis, University of KwaZulu-Natal, Pietermaitzburg, submitted. W. Bosma and J. J. Cannon (1994). Handbook of Magma Functions. Department of Mathematics, University of Sydeny, November. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson (1985). Atlas of Finite Groups. Clarendon Press, Oxford. A. H. Clifford (1937). Representations induced in an invariant subgroup. Ann. of Math.. 38, 533-550 U. Dempwolff On extensions of elementary abelian groups of order $2^{n}$ by $GL(n,2)$ and the degree 2-cohomology of $GL(n,2)$. Unpublished. U. Dempwolff (1972). On extensions of elementary abelian groups of order $2^{5}$ by $GL(5,2)$. Rend. Sem. Mat. Univ. Padova. 48, 359-364 B. Fischer (1982). Clifford matrizen. manuscript. B. Fischer (1985). Unpublished manuscript. B. Fischer and Clifford matrices (1991). Representation theory of finite groups and finite-dimensional Lie algebras. (eds G. O. Michler and C. M. Ringel; Birkh\"{a}user, Basel. , 1-16 The GAP Group (2007). GAP -- Groups, Algorithms, and Programming, Version 4.4.10;. (http://www.gap-system.org). D. Gorenstein (1968). Finite Groups. Harper and Row Publishers, New York. B. Huppert (1967). Endliche Gruppen. Springer-Verlag, Berlin-New York. Maxima (2009). A Computer Algebra System. Version 5.18.1;. (http://maxima.sourceforge.net). G. Michler (2006). Theory of Finite Simple Groups. New Mathematical Monographs, Cambridge University Press. 8 J. Moori and A. Basheer (2012). On a group of the form $2^{10}{:}(U_{5}(2){:}2),$ to be submitted. J. Moori and A. Basheer (2012). On the non-split extension $2^{2n}{^{\cdot}}Sp(2n,2)$ and the character table of $2^{8}{^{\cdot}}Sp(8,2)$. to be submitted. J. Moori and A. Basheer The character table of the non-split extension $2^{6}{^{\cdot}}Sp(6,2)$. submitted. J. Moori and A. Basheer (2012). Fischer matrices and the character table of a group of the form $3^{7}{:}Sp(6,2)$. to be submitted. J. Moori and A. Basheer Fischer matrices of the group $2_{+}^{1+8}{^{\cdot}}A_{9}$. submitted. J. Moori (1975). On the Groups $G^{+}$ and $\overline{G}$ of the form $2^{10}{:}M_{22}$ and $2^{10}{:}\overline{M}_{22}$. PhD Thesis, University of Birmingham. J. Moori (1981). On certain groups associated with the smallest Fischer group. J. London Math. Soc.. 2, 61-67 Z. E. Mpono (1998). Fischer Clifford Theory and Character Tables of Group Extensions. PhD Thesis, University of Natal, Pietermaritzburg. J. Moori and Z. Mpono (1999). The Fischer-Clifford matrices of the group $2^{6}{:}SP_{6}(2)$. Quaest. Math.. 22, 257-298 H. Pahlings (2007). The character table of $2^{1+22}_{+}{^{\cdot}}Co_{2}$. Journal of Algebra. 315, 301-325 K. Lux and H. Pahlings (2010). Representations of Groups: A Computational Approach. Cambridge University Press, Cambridge. B. G. Rodrigues (1999). On The Theory and Examples of Group Extensions. MSc Thesis, University of Natal, Pietermaritzburg. U. Schiffer (1995). Cliffordmatrizen. Diplomarbeit, Lehrstul D Fur Matematik, RWTH, Aachen. N. S. Whitely (1993). Fischer Matrices and Character Tables of Group Extensions. MSc Thesis, University of Natal, Pietermaritzburg. R. A. Wilson et al. Atlas of finite group representations. http://brauer.maths.qmul.ac.uk/Atlas/v3/ ..