Three infinite families of finite abelian groups will be described such that each member of these families has the R'edei $k$-property for many non-trivial values of $k$.
K. Amin (2012). Factorization of finite abelian groups. Int. J. Algebra. 6 (1-4), 101-107 K. Amin, K. Corr\'adi and A. D. Sands (2000). The Haj\'os property for $2$-groups. Acta Math. Hungar.. 89, 189-198 L. R\'edei (1965). Die neue Theorie der endlichen Abelschen Gruppen und Verallgemeinerung
des Hauptsatzes von Haj\'os. Acta Math. Acad. Sci. Hungar.. 16, 329-373 L. R\'edei (1970). L\"uckenhafte Polynome \"uber endlichen K\"orpern. Birkh\"auser Verlag, Basel. S. Szab\'o (1994). An elementary proof for Haj\'os' theorem through a generalization. Math. Japon.. 40, 99-107 S. Szab\'o (2000). Factoring an infinite abelian group by subsets. Period. Math. Hungar.. 40, 135-140 S. Szab\'o (2011). Verifying a conjecture of L. R\'edei for $p=13$. Math. Comp.. 80 (274), 1155-1162 S. Szab\'o (2011). Factoring elementary $p$-groups for $p\leq 7$. Open J. Discrete Math.. 1, 1-5
Szabo, S. (2013). Certain finite abelian groups with the Redei $k$-property. International Journal of Group Theory, 2(2), 41-45. doi: 10.22108/ijgt.2013.1919
MLA
Szabo, S. . "Certain finite abelian groups with the Redei $k$-property", International Journal of Group Theory, 2, 2, 2013, 41-45. doi: 10.22108/ijgt.2013.1919
HARVARD
Szabo, S. (2013). 'Certain finite abelian groups with the Redei $k$-property', International Journal of Group Theory, 2(2), pp. 41-45. doi: 10.22108/ijgt.2013.1919
CHICAGO
S. Szabo, "Certain finite abelian groups with the Redei $k$-property," International Journal of Group Theory, 2 2 (2013): 41-45, doi: 10.22108/ijgt.2013.1919
VANCOUVER
Szabo, S. Certain finite abelian groups with the Redei $k$-property. International Journal of Group Theory, 2013; 2(2): 41-45. doi: 10.22108/ijgt.2013.1919