[1] M. Asaad and V. S. Monakhov, Some Sufficient conditions for a finite group to be supersolvable, Acta Math. Hungar., 135 (2012) 168–173.
[2] A. Ballester-Bolinches and J. Cossey, Finite groups with many metacyclic subgroups, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 15 (2016) 657–662.
[3] A. Ballester-Bolinches, N. Su and Y. Wang, On finite groups with metacyclic Sylow p-subgroups, Publ. Math.
Debrecen, 88 (2016) 417–423.
[4] Y. Berkovich, On solvable groups of the finite order, Mat. Sb. (N.S.), 74 (1967) 75–92.
[5] N. Blackburn, Generalizations of certain elementary theorems on p-groups, Proc. London Math. Soc. (3), 11 (1961) 1–22.
[6] A. R. Camina and T. M. Gagen, Groups with metacyclic sylow 2-subgroups, Cand. J. Math., 21 (1969) 1234–1237.
[7] D. Chillag and J. Sonn, Sylow metacyclic group and Q-admissibility, Israel J. Math., 40 (1981) 307–323.
[8] E. Crestani and F. Menegazzo, On monotone 2-groups, J. Group Theory, 15 (2012) 359–383.
[9] K. Doerk, Minimal nicht überauflösbare, endliche Gruppen, Math. Z., 91 (1966) 198–205.
[10] P. Flavell, Finite groups in which every two elements generate a soluble subgroup, Invent. Math., 121 (1995) 279–285.
[11] B. Huppert, Endliche Gruppen I, (German) Die Grundlehren der Mathematischen Wissenschaften, 134, Springer Verlag, Berlin, Heidelberg, New York, 1967.
[12] A. Mann, The number of generators of finite p-groups, J. Group Theory, 8 (2005) 317–337.
[13] V. D. Mazurov, Finite groups with metacyclic sylow 2-subgroups, Sibirsk. Mat. Zh, 8 (1967) 966–982.
[14] V. S. Monakhov and E. E. Gribovskaya, Maximal and sylow subgroups of solvable finite groups, Mat. Notes, 70 (2001) 545–552.
[15] M. Schacher, Subfields of division rings I, J. Algebra, 9 (1968) 451–477.
[16] R. Schmidt, Subgroup lattices of groups, De Gruyter Expositions in Mathematics, 14, Walter de Gruyter, Berlin, 1994.
[17] J. Sonn, Q-admissibility of solvable groups, J. Algebra, 84 (1983) 411–419.