Finite groups of the same type as Suzuki groups

Document Type : Research Paper

Authors

1 Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran

2 Alvand Institute of Higher Education, Hamedan, Iran.

Abstract

‎For a finite group $G$ and a positive integer $n$‎, ‎let $G(n)$ be the set of all elements in $G$ such that $x^{n}=1$‎. ‎The groups $G$ and $H$ are said to be of the same (order) type if $|G(n)|=|H(n)|$‎, ‎for all $n$‎. ‎The main aim of this paper is to show that if $G$ is a finite group of the same type as Suzuki groups $Sz(q)$‎, ‎where $q=2^{2m+1}\geq 8$‎, ‎then $G$ is isomorphic to $Sz(q)$‎. ‎This addresses to the well-known J‎. ‎G‎. ‎Thompson's problem (1987) for simple groups‎.

Keywords

Main Subjects


[1] S. H. Alavi, A. Daneshkhah and H. P. Mosaed, On quantitative structure of small Ree groups, Communications
in Algebra , 45 no. 9 (2017) 4099{4108.
[2] A. Khalili Asb o ei, Characterization of pro jective general linear groups, Int. J. Group Theory , 5 no. 1 (2016) 17{28.
[3] A. Khalili Asb o ei and S. S. Salehi Amiri, A new characterization of P S L (2 ; 25), Int. J. Group Theory , 1 no. 3
(2012) 15{19.
[4] R. W. Carter, Simple groups of Lie type , John Wiley & Sons, London-New York-Sydney, 28 , Pure and Applied
Mathematics, 1972.
[5] G. Y. Chen, On structure of Frob enius and 2-Frob enius group, J. Southwest China Normal Univ. , 20 no. 5 (1995)
485{487.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of nite groups , Oxford University
Press, Eynsham, 1985.
[7] D. Gorenstein, Finite groups , Chelsea Publishing Company., New York, second edition, 1980.
[8] M. Jr. Hall, The theory of groups , The Macmillan Co., New York, N.Y., 1959.
[9] B. Hupp ert and N. Blackburn, Finite groups. III , Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], 243 , Springer-Verlag, Berlin-New York, 1982.
[10] A. Iranmanesh, H. Parvizi Mosaed and A. Tehranian, Characterization of suzuki group by nse and order of group ,
Bulletin of the Korean Mathematical So ciety, Accepted, 2015.
[11] V. D. Mazurov and E. I. Khukhro, Unsolved Problems in Group Theory , The Kourovka Noteb o ok, 18 2014,
Available at arxiv.org/abs/1401.0300v6 .
[12] L. Mousavi and B. Taeri, A characterization of L 2 (81) by nse, Int. J. Group Theory , 5 (1) 29{35 (2016).
[13] C. Shao, W. Shi and Q. Jiang, Characterization of simple K 4 -groups., Front. Math. China , 3 no. 3 (2008) 355{370.
[14] W. J. Shi, A characterization of Suzuki's simple groups, Proc. Amer. Math. Soc. , 114 no. 3 (1992) 589{591.
[15] L. Weisner, On the numb er of elements of a group which have a p ower in a given conjugate set, Bul l. Amer. Math.
Soc. , 31 no. 9-10 (1925) 492{496.
[16] J. S. Williams, Prime graph comp onents of nite groups, J. Algebra , 69 no. 2 (1981) 487{513.