${\rm B}_\pi$-characters and quotients

Document Type : Research Paper


Department of Mathematical Sciences Kent State University


‎Let $\pi$ be a set of primes‎, ‎and let $G$ be a finite $\pi$-separable group‎. ‎We consider the Isaacs ${\rm B}_\pi$-characters‎. ‎We show that if $N$ is a normal subgroup of $G$‎, ‎then ${\rm B}_\pi (G/N) = Irr {G/N} \cap {\rm B}_\pi (G)$‎.


Main Subjects

[1] D. Ga jendragadkar, A characteristic class of characters of nite p -separable groups, J. Algebra , 59 (1979) 237{259.
[2] I. M. Isaacs, Character Theory of Finite Groups , Academic Press, San Diego, California, 1976.
[3] I. M. Isaacs, Characters of  -separable groups, J. Algebra 86 (1984) 98{128.
[4] I. M. Isaacs, The  -character theory of solvable groups, J. Austral. Math. Soc. (Series A) , 57 (1994) 81{102.
[5] I. M. Isaacs, Characters and sets of primes for solvable groups, in Finite and local ly nite groups (Istanbul, 1994) ,
NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471 , Kluwer Acad. Publ., Dordrecht, 1995 347{376.
[6] M. L. Lewis, Landau's theorem, elds of values for characters, and solvable groups, J. Austral. Math. Soc. , (2016)