A note on Engel elements in the first Grigorchuk group

Document Type : Research Paper


1 Department of Mathematics (University of Salerno), Italy - Department of Mathematics and Statistic (University of the Basque Country), Spain

2 Dipartimento di Matematica, Università di Salerno - Italy


Let $\Gamma$ be the first Grigorchuk group‎. ‎According to a result of Bar\-thol\-di‎, ‎the only left Engel elements of $\Gamma$ are the involutions‎. ‎This implies that the set of left Engel elements of $\Gamma$ is not a subgroup‎. ‎The natural question arises whether this is also the case for the sets of bounded left Engel elements‎, ‎right Engel elements and bounded right Engel elements of $\Gamma$‎. ‎Motivated by this‎, ‎we prove that these three subsets of $\Gamma$ coincide with the identity subgroup‎.


Main Subjects

[1] A. Ab dollahi, Engel elements in groups , Groups St Andrews 2009 in Bath. 1 , Cambridge Univ. Press, Cambridge,
(2011) 94{117.
[2] R. Bastos, N. Mansuroglu, A. Tortora and M. Tota, Bounded Engel elements in groups satisfying an identity, Arch.
Math. , 110 (2018) 311{318.
[3] L. Bartholdi, Algorithmic decidability of Engel's property for automaton groups , Computer science{theory and ap-
plications, Springer, (2016) 29{40.
[4] L. Bartholdi, Decidability problems in automaton semigroups , arXiv:1705.04598.
[5] V. V. Bludov, An example of not Engel group generated by Engel elements , A Conference in Honor of Adalb ert
Bovdi's 70th Birthday, Novemb er 18{23, Debrecen, Hungary.
[6] P. de la Harp e, Topics in geometric group theory , University of Chicago Press, Chicago, 2000.
[7] R. I. Grigorchuk, On Burnside's problem on p erio dic groups, Funktsional. Anal. i Prilozhen. , 14 (1980) 53{54.
[8] V. D. Mazurov and E. I. Khukhro, Unsolved Problems in Group Theory, The Kourovka Notebook. ,
[9] M. No ce, The rst Grigorchuk group , Master's Thesis, Universita di Salerno, 2016.
[10] D. J. S. Robinson, A course in the Theory of Groups , 2nd edition, Springer-Verlag, New York, 1996.
[11] P. Shumyatsky, A. Tortora and M. Tota, Engel groups with an identity , arXiv:1805.12411.