A presentation for the subgroup of compressed conjugating automorphisms of a partially commutative group

Document Type : Research Paper


Newcastle University


Let $G_{\Gamma}$ be a partially commutative group. We find a finite presentation for the subgroup $Conj_v(G_{\Gamma})$ of compressed vertex conjugating automorphisms of the automorphism group $Aut(G_{\Gamma})$ of $G$. We have written GAP packages which compute presentations for $Aut(G_{\Gamma})$ and its subgroups $Conj(G_{\Gamma})$ and $Conj_v(G_{\Gamma})$.


Main Subjects

1. A. J. AL-Juburie, Partial ly commutative and differential graded algebraic structures , Ph. D. thesis, Scho ol of Math-
ematics and Statistics, Newcastle University, United Kingdom, 2015, available at https://theses.ncl.ac.uk/ .
2. A. J. AL-Juburie, A. Duncan, M. Fisher and G. Mitchell, AutParCommGrp package (Finite Presentations of Auto-
morphism Groups of Partial ly Commutative Groups and Their Subgroups) , (GAP system library free software), To
app ear.
3. R. Charney, An intro duction to right-angled Artin groups, Geom. Dedicata , 125 (2007) 141{158.
4. R. Charney, N. Stambaugh and K. Vogtmann, Outer space for untwisted automorphisms of right-angled Artin groups ,
ArXiv e-prints, (2012) 1{35.
5. M. B. Day, Peak reduction and nite presentations for automorphism groups of right-angled Artin groups, Geom.
Topol. , 13 (2009) 817{855.
6. V. Diekert and G. Rozenb erg, The book of traces , World Scienti c, 1995.
7. A. J. Duncan and V. N. Remeslennikov, Automorphisms of partially commutative groups I I: Combinatorial sub-
groups, Internat. J. Algebra Comput. , 22 (2012) pp. 44.
8. E. S. Esyp, I. V. Kazachkov and V. N. Remeslennikov, Divisibility theory and complexity of algorithms for free
partially commutative groups, Contemp. Math. , Groups, Languages, Algorithms, 378 (2005) 319{348.
9. The GAP Group, GAP { Groups, Algorithms, and Programming, Version 4.7.9 , 2015.
10. M. Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. , 52 (1995)
11. J. McCo ol, On basis-conjugating automorphisms of free groups, Canadian J. Math. , 38 (1986) 1525{1529.
12. G. A. Noskov, The image of the automorphism group of a graph group under ab elianization map, Vestnik NGU,
Mat. Mekh. , 12 (2012) 83{102.
13. H. Servatius, Automorphisms of graph groups, J. Algebra , 126 (1989) 34{60.
14. E. Toinet, A nitely presented subgroup of the automorphism group of a right-angled Artin group, J. Group Theory ,
15 (2012) 811{822.
15. D. T. Wise, From riches to raags: 3-manifolds, right-angled artin groups, and cubical geometry , Conference b oard of
the Mathematical Sciences. Regional conference series in mathematics, American Mathematical So ciety, 2012.
Volume 8, Issue 3 - Serial Number 3
September 2019
Pages 33-42
  • Receive Date: 13 June 2017
  • Revise Date: 23 August 2018
  • Accept Date: 16 October 2018
  • Published Online: 01 September 2019