Further rigid triples of classes in $G_{2}$

Document Type : Research Paper

Authors

1 University of Cambridge

2 Bielefeld University, and Ruhr-University Bochum

Abstract

We establish the existence of two rigid triples of conjugacy classes in the algebraic group G2 in characteristic 5, complementing results of the second author with Liebeck and Marion. As a corollary, the finite groups G2(5^n) are not (2,4,5)-generated, confirming a conjecture of Marion in this case.

Keywords

Main Subjects


[1] B. Chang and R. Ree, The characters of G 2 ( q ), Symp osia Mathematica, XI I I (Convegno di Gruppi e loro Rappre-
sentazioni, INDAM, Rome,1972), Academic Press, London, 1974, 395{413.
[2] M. Dettweiler and S. Reiter, On rigid tuples in linear groups of o dd dimension, J. Algebra , 222 (1999) 550{560.
[3] W. Feit and P. Fong, Rational rigidity of G 2 ( p ) for any prime p > 5, Pro ceedings of the Rutgers group theory year,
1983{1984 (New Brunswick, N.J., 19831984), Cambridge Univ. Press, Cambridge, 1985, 323{326.
[4] M. Geck, G. Hiss, F. L ub eck, G. Malle and Gotz Pfeiffer, CHEVIE|a system for computing and pro cessing generic
character tables, Appl. Algebra Engrg. Comm. Comput. , 7 (1996) 175{210.
[5] R. Guralnick and G. Malle, Rational rigidity for E 8 ( p ), Compos. Math. , 150 (2014) 1679{1702.
[6] S. Jamb or, A. Litterick and C. Marion, On finite simple images of triangle groups , To app ear in Israel Journal of Mathematics.
[7] N. M. Katz, Rigid local systems , Annals of Mathematics Studies, 139 , Princeton University Press, Princeton, NJ,
1996.
[8] R. Lawther, Jordan blo ck sizes of unip otent elements in exceptional algebraic groups, Comm. Algebra , 23 (1995)
4125{4156.
[9] Martin W. Lieb eck, Alastair J. Litterick and Claude Marion, A rigid triple of conjugacy classes in G 2 , J. Group
Theory , 14 (2011) 31{35.
[10] M. W. Lieb eck and G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. , 121
(1996) vi+111.
[11] , Unipotent and nilpotent classes in simple algebraic groups and Lie algebras , Mathematical Surveys and
Monographs, 180 , American Mathematical So ciety, Providence, RI, 2012.
[12] G. Malle and B. Heinrich Matzat, Inverse Galois theory , Springer Monographs in Mathematics, Springer-Verlag,
Berlin, 1999.
[13] G. Malle and D. Testerman, Linear algebraic groups and nite groups of Lie type , Cambridge Studies in Advanced
Mathematics, 133 , Cambridge University Press, Cambridge, 2011.
[14] C. Marion, On triangle generation of nite groups of Lie typ e, J. Group Theory , 13 (2010) 619{648.
[15] L. L. Scott, Matrices and cohomology, Ann. of Math. (2) , 105 (1977) 473{492.
[16] K. Strambach and H. Volklein, On linearly rigid tuples, J. Reine Angew. Math. , 510 (1999) 57{62.
[17] J. G. Thompson, Rational rigidity of G 2 (5), Pro ceedings of the Rutgers group theory year, 1983{1984 (New
Brunswick, N.J., 1983{1984), Cambridge Univ. Press, Cambridge, 1985, 321{322.
[18] Helmut Volklein, Rigid generators of classical groups, Math. Ann. , 311 (1998) 421{438.
  • Receive Date: 08 June 2018
  • Revise Date: 27 July 2018
  • Accept Date: 16 October 2018
  • Published Online: 01 December 2019