[1] B. Chang and R. Ree, The characters of G 2 ( q ), Symp osia Mathematica, XI I I (Convegno di Gruppi e loro Rappre-
sentazioni, INDAM, Rome,1972), Academic Press, London, 1974, 395{413.
[2] M. Dettweiler and S. Reiter, On rigid tuples in linear groups of o dd dimension, J. Algebra , 222 (1999) 550{560.
[3] W. Feit and P. Fong, Rational rigidity of G 2 ( p ) for any prime p > 5, Pro ceedings of the Rutgers group theory year,
1983{1984 (New Brunswick, N.J., 19831984), Cambridge Univ. Press, Cambridge, 1985, 323{326.
[4] M. Geck, G. Hiss, F. L ub eck, G. Malle and Gotz Pfeiffer, CHEVIE|a system for computing and pro cessing generic
character tables, Appl. Algebra Engrg. Comm. Comput. , 7 (1996) 175{210.
[5] R. Guralnick and G. Malle, Rational rigidity for E 8 ( p ), Compos. Math. , 150 (2014) 1679{1702.
[6] S. Jamb or, A. Litterick and C. Marion, On finite simple images of triangle groups , To app ear in Israel Journal of Mathematics.
[7] N. M. Katz, Rigid local systems , Annals of Mathematics Studies, 139 , Princeton University Press, Princeton, NJ,
1996.
[8] R. Lawther, Jordan blo ck sizes of unip otent elements in exceptional algebraic groups, Comm. Algebra , 23 (1995)
4125{4156.
[9] Martin W. Lieb eck, Alastair J. Litterick and Claude Marion, A rigid triple of conjugacy classes in G 2 , J. Group
Theory , 14 (2011) 31{35.
[10] M. W. Lieb eck and G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. , 121
(1996) vi+111.
[11] , Unipotent and nilpotent classes in simple algebraic groups and Lie algebras , Mathematical Surveys and
Monographs, 180 , American Mathematical So ciety, Providence, RI, 2012.
[12] G. Malle and B. Heinrich Matzat, Inverse Galois theory , Springer Monographs in Mathematics, Springer-Verlag,
Berlin, 1999.
[13] G. Malle and D. Testerman, Linear algebraic groups and nite groups of Lie type , Cambridge Studies in Advanced
Mathematics, 133 , Cambridge University Press, Cambridge, 2011.
[14] C. Marion, On triangle generation of nite groups of Lie typ e, J. Group Theory , 13 (2010) 619{648.
[15] L. L. Scott, Matrices and cohomology, Ann. of Math. (2) , 105 (1977) 473{492.
[16] K. Strambach and H. Volklein, On linearly rigid tuples, J. Reine Angew. Math. , 510 (1999) 57{62.
[17] J. G. Thompson, Rational rigidity of G 2 (5), Pro ceedings of the Rutgers group theory year, 1983{1984 (New
Brunswick, N.J., 1983{1984), Cambridge Univ. Press, Cambridge, 1985, 321{322.
[18] Helmut Volklein, Rigid generators of classical groups, Math. Ann. , 311 (1998) 421{438.