On some generalization of the malnormal subgroups

Document Type : Ischia Group Theory 2018


1 National University of Dnipro

2 University of State Fiscal Service of Ukraine

3 Department of Mathematics and Natural Sciences, College of Letters and Sciences, National University, USA


‎‎A subgroup $H$ of a group $G$ is called malonormal in $G$ if $H \cap H^x =\langle 1\rangle$ for every element $x \notin N_G(H)$‎. ‎These subgroups are generalizations of malnormal subgroups‎. ‎Every malnormal subgroup is malonormal‎, ‎and every selfnormalizing malonormal subgroup is malnormal‎. ‎Furthermore‎, ‎every normal subgroup is malonormal‎. ‎In this paper we obtain a description of finite and certain infinite groups‎, ‎whose subgroups are malonormal‎.


Main Subjects

[1] B. Baumslag, Generalized free products whose two-generator subgroups are free, J. London Math. Soc., 43 (1968)
[2] R. Baer, Situation der Untergruppen und Struktur der Gruppe, Sitz. Ber. Heidelberg Akad., 2 (1933) 12–17.
[3] Ya. Berkovich, Groups of prime power order, 1, Walter de Gruyter: Berlin-2008.
[4] S. N. Chernikov, Infinite nonabelian groups with an invariance condition for infinite nonabelian subgroups, Dokl.
Akad. Nauk SSSR, 194 (1970) 1280–1283.
[5] M. R. Dixon, L. A. Kurdachenko and I. Ya. Subbotin, Ranks of groups. The tools, characteristics and restrictions,
Wiley, New York, 2017.
[6] P. Flavell, A note on Frobenius groups, J. Algebra, 228 (2000) 367–376.
[7] L. Fuchs, Infinite abelian groups, 1, Academic Press, New York, 1970.
[8] D. Gorenstein, Finite groups, Chelsea Publ. Co., New York, 1980.
[9] P. Hall Finiteness conditions for soluble groups, Proc. London Math. Soc., 4 (1954) 419–436.
[10] P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc., 9 (1959) 595–622.
[11] P. Hall and C. R. Kulatilaka, A property of locally finite groups, J. London Math. Soc., 39 (1964) 235–239.
[12] P. De la Harpe and C. Weber, Malnormal subgroups and Frobenius groups: basics and examples, Confluentes Math.,
6 (2014) 65–76.
[13] M. I. Kargapolov, On a problem of O. Ju. midt, Sibirsk. Mat. Z., 4 (1963) 232–235.
[14] V. V. Kirichenko, L. A. Kurdachenko and I. Ya. Subbotin, Some related to pronormality subgroup families and the
properties of a group, Algebra Discrete Math., 11 (2011) 75–108.
[15] L. A. Kurdachenko, Artinian modules over group rings, Frontiers in Mathematics, Birkhuser Verlag, Basel, 2007.
[16] F. N. Liman, 2-groups with normal non-cyclic subgroups, Math. Notes, 4 (1968) 535–539.
[17] F. N. Liman, Periodic groups, whose abelian normal non-cyclic subgroups are invariant, In book “Groups with
restrictions on subgroups”, Naukova Dumka, 1971 65–95.
[18] A. Yu. Olshanskii, Infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980)
[19] D. J. S. Robinson, a. Russo and G. Vincenzi, On groups which contain no HNN-extension, Internat. J. Algebra
Comput., 17 (2007) 1377–1387. 
Volume 9, Issue 1 - Serial Number 1
Proceedings of the Ischia Group Theory 2018
March 2020
Pages 7-24
  • Receive Date: 17 July 2018
  • Revise Date: 04 December 2018
  • Accept Date: 09 December 2018
  • Published Online: 01 March 2020