Finite groups with seminormal or abnormal Sylow subgroups

Document Type : Research Paper

Authors

1 Francisk Skorina Gomel State University, Department of Mathematics, Sovetskaya str., 104, Gomel, 246019, Republic of Belarus

2 Physic and Mathematic Department, Brest State A.S. Pushkin University, Brest, Belarus

Abstract

‎Let $G$ be a finite group in which every Sylow subgroup‎ ‎is seminormal or abnormal‎. ‎We prove that $G$ has a Sylow tower‎. ‎We establish that if a group has a maximal subgroup ‎‎‎‎with Sylow subgroups under the same conditions‎, ‎then this group is soluble‎.

Keywords

Main Subjects


[1] X. Su, Semi-normal subgroups of finite groups, J. Math., 8 (1988) 7–9.
[2] P. Wang, Some sufficient conditions of a nilpotent group, J. Algebra, 148 (1992) 289–295.
[3] T. Foguel, On seminormal subgroups, J. Algebra, 165 (1994) 633–635.
[4] A. Carocca, H. Matos, Some solvability criteria for finite groups, Hokkaido Math. J., 26 (1997) 157–161.
[5] V. V. Podgornaya, Seminormal subgroups and supersolubility of finite groups, Vests¨ı Nats. Akad. Navuk Belarus¨ı
Ser. F¨ız.-Mat. Navuk, (2000) 22–25.
[6] V. S. Monakhov, Finite groups with a seminormal Hall subgroup, Math. Notes, 80 (2006) 542–549.
[7] V. N. Knyagina, V. S. Monakhov, Finite groups with seminormal Schmidt subgroups, Algebra Logic, 46 (2007)
244–249.
[8] W. Guo, Finite groups with seminormal Sylow subgroups, Acta Math. Sin. (Engl. Ser.), 24 (2008) 1751–1758.
[9] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992.
[10] B. Huppert, Endliche Gruppen I, Springer, Berlin, Heidelberg, New York, 1967.
[11] E. P. Vdovin, Carter subgroups of finite groups, Siberian Adv. Math., 19 (2009) 24–74.
Volume 9, Issue 3 - Serial Number 3
September 2020
Pages 139-142
  • Receive Date: 19 August 2018
  • Revise Date: 27 September 2018
  • Accept Date: 17 October 2018
  • Published Online: 01 September 2020