[1] R. Baer, Classes of finite groups and their properties, Illinois J. Math., 1 (1957) 115–187.
[2] A. Ballester-Bolinches, R. Esteban-Romero, P. Jim´enez-Seral and H. Meng, Bounds on the number of maximal
subgroups with applications to random generation of finite groups, Preprint.
[3] A. Ballester-Bolinches and L. M. Ezquerro, Classes of finite groups, Mathematics and Its Applications, Springer,
Dordrecht, 584 (2006).
[4] A. V. Borovik, L. Pyber and A. Shalev, Maximal subgroups in finite and profinite groups, Trans. Amer. Math.
Soc., 348 (1996) 3745–3761.
[5] T. C. Burness, M. W. Liebeck and A. Shalev, Generation and random generation: From simple groups to maximal
subgroups, Adv. Math., 248 (2013) 59–95.
[6] F. Dalla Volta and A. Lucchini, Finite groups that need more generators than any proper quotient, J. Austral.
Math. Soc. Ser. A, 64 (1998) 82–91.
[7] F. Dalla Volta, A. Lucchini and F. Morini, On the probability of generating a minimal d-generated group, J. Aust.
Math. Soc., 71 (2001) 177–185.
[8] E. Detomi and A. Lucchini, Crowns and factorization of the probabilistic zeta function of a finite group, J. Algebra,
265 (2003) 651–668.
[9] E. Detomi and A. Lucchini, Crowns in profinite groups and applications, Noncommutative Algebra and Geometry,
Lect. Notes Pure Appl. Math., Chapman & Hall/CRC, 243 (2006) 47–62.
[10] J. D. Dixon, The probability of generating the symmetric group, Math. Z., 110 (1969) 199–205.
[11] W. Gasch¨utz, Die Eulersche Funktion endlicher aufl¨osbarer Gruppen, Illinois J. Math., 3 (1959) 469–476.
[12] A. Jaikin-Zapirain and L. Pyber, Random generation of finite and profinite groups and group enumeration, Ann.
Math., 173 (2011) 769–814.
[13] , Random generation of finite and profinite groups and group enumeration, http://verso.mat.uam.es/
~andrei.jaikin/preprints/pfg.pdf, 2017, Visited 20th February, 2017.
[14] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Dedicata, 36 (1990)
67–87.
[15] M. W. Liebeck and A. Shalev, The probability of generating a finite simple group, Geom. Dedicata, 56 (1995)
103–113.
[16] A. Lubotzky, The expected number of random elements to generate a finite group, J. Algebra, 257 (2002) 452–459.
[17] A. Mann and A. Shalev, Simple groups, maximal subgroups, and probabilistic aspects of profinite groups, Israel
J. Math., 96 (1996) 449–468.
[18] E. Netto, The theory of substitutions and its applications to algebra, Second edition. Revised by the author and
translated with his permission by F. N. Cole Chelsea Publishing Co., New York, 1964.
[19] I. Pak, On probability of generating a finite group, Preprint, http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.43.7319.
[20] C. Pomerance, The expected number of random elements to generate a finite abelian group, Period. Math. Hungar.,
43 (2001) 191–198.
[21] L. Pyber, The number of maximal core-free subgroups of a finite group, In preparation.
[22] J. Wiegold, Growth sequences of finite groups IV, J. Austral. Math. Soc. (Ser. A), 29 (1980) 14–16.