We study an inverse problem of small doubling type. We investigate the structure of a finitely generated group $G$ such that, for any set $S$ of generators of $G$ of minimal order, we have $S^2 leq 3|S|-beta$, where $beta in {1, 2, 3}$
Kurdachenko, L., Longobardi, P., Maj, M. (2020). Groups with numerical restrictions on minimal generating sets. International Journal of Group Theory, 9(2), 95-111. doi: 10.22108/ijgt.2019.115131.1526
MLA
Leonid A Kurdachenko; Patrizia Longobardi; Mercede Maj. "Groups with numerical restrictions on minimal generating sets". International Journal of Group Theory, 9, 2, 2020, 95-111. doi: 10.22108/ijgt.2019.115131.1526
HARVARD
Kurdachenko, L., Longobardi, P., Maj, M. (2020). 'Groups with numerical restrictions on minimal generating sets', International Journal of Group Theory, 9(2), pp. 95-111. doi: 10.22108/ijgt.2019.115131.1526
VANCOUVER
Kurdachenko, L., Longobardi, P., Maj, M. Groups with numerical restrictions on minimal generating sets. International Journal of Group Theory, 2020; 9(2): 95-111. doi: 10.22108/ijgt.2019.115131.1526