Groups with numerical restrictions ‎on minimal generating sets

Document Type : Ischia Group Theory 2018

Authors

1 National University of Dnipro

2 Dipartimento di Matematica Universita' di Salerno

3 University of Salerno

Abstract

We study an inverse problem of small doubling type. We investigate the structure of a finitely generated group $G$ such that, for any set $S$ of generators of $G$ of minimal order, we have $S^2 ≤ 3|S|-ß$, where $ß ∈ {1, 2, 3}$

Keywords

Main Subjects


[1] Y. Bilu, Structure of sets with small sumset, Structure theory of set addition, Ast´erisque, 258 (1999) 77–108.
[2] L. V. Brailovsky and G. A. Freiman, On a product of finite subsets in a torsion-free group, J. Algebra, 130 (1990)
462–476.
[3] E. Breuillard, B. Green and T. Tao, Small doubling in groups, Erd˝os Centennial, Bolyai Soc. Math. Studies, 25
(2013) 129--151.
[4] K. J. B¨or¨oczky, P. P. P´alfy and O. Serra, On the cardinality of sumsets in torsion-free groups, Bull. Lond. Math.
Soc., 44 (2012) 1034–1041.
[5] J.-M. Deshouillers, F. Hennecart and A. Plagne, On small sumsets in (Z/2Z)n, Combinatorica, 24 (2004) 53–68.
[6] G. A. Fre˘iman, On the addition of finite sets. I., Izv. Vys˘s. U˘cebn. Zaved. Matematika, 6 (1959) 202–213.
[7] G. A. Freiman, Inverse problems of additive number theory. IV: On the addition of finite sets. II, Elabuˇz , Gos. Ped.
Inst. Ucen. Zap. , 8 (1960) 72–116.
[8] G. A. Freiman, Foundations of a structural theory of set addition, Translations of mathematical monographs, 37,
American Mathematical Society, Providence, R. I., 1973.
[9] G. A. Freiman, Structure Theory of Set Addition, Ast´erisque, 258 (1999) 1–33.
[10] G. Freiman, M. Herzog, P. Longobardi and M. Maj, Small doubling in ordered groups, J. Aust. Math. Soc., 96
(2014) 316–325.
[11] G. Freiman, M. Herzog, P. Longobardi, M. Maj and Y. V. Stanchescu, Direct and inverse problems in additive
number theory and in non-abelian group theory, European J. Combin., 40 (2014) 42–54.
[12] G. Freiman, M. Herzog, P. Longobardi, M. Maj and Y. V. Stanchescu, Some inverse problems in group theory, Note
Mat., 34 (2014) 89–104.
[13] G. Freiman, M. Herzog, P. Longobardi, M. Maj and Y. V. Stanchescu, A small doubling structure theorem in a
Baumslag-Solitar group, European J. Combin., 44 (2015) 106–124.
[14] G. Freiman, M. Herzog, P. Longobardi, M. Maj and Y. V. Stanchescu, Small doubling in nilpotent groups of class
2, European J. Combin., 67 (2018) 87–95.
[15] G. Freiman, M. Herzog, P. Longobardi, M. Maj, A. Plagne, D. J. S. Robinson and Y. V. Stanchescu, On the
structure of subsets of an orderable group with some small doubling properties, J. Algebra, 445 (2016) 307–326.
[16] G. A. Freiman, M. Herzog, P. Longobardi, M. Maj, A. Plagne and Y. V. Stanchescu, Small doubling in ordered
groups: Generators and structure, Groups Geom. Dyn., 11 (2017) 585–612.
[17] G. A. Freiman and B. M. Schein, Group and semigroup theoretic considerations inspired by inverse problems of the
additive number theory, Semigroups, theory and applications (Oberwolfach, 1986), 121140, Lecture Notes in Math.,
Springer, Berlin, 1988.
[18] B. Green, What is ... an approximate group?, Notices Amer. Math. Soc., 59 (2012) 655–656.
[19] B. Green and I. Z. Ruzsa, Freiman’s theorem in an arbitrary abelian group, J. London Math. Soc., 75 (2007)
163–175.
[20] Y. O. Hamidoune, An application of connectivity theory in graphs to factorizations of elements in groups, European
J. Combin., 2 (1981) 349–355.
[21] Y. O. Hamidoune, The isoperimetric method, Combinatorial number theory additive group theory, Adv. Courses
Math. CRM Barcelona, Birkhauser Verlag, Basel, (2009) 241-252.
[22] Y. O. Hamidoune and A. Plagne, A generalization of Freiman’s 3k − 3 Theorem, Acta Arith., 103 (2002) 147–156.
[23] Y. O. Hamidoune and A. Plagne, A multiple set version of the 3k − 3 theorem, Rev. Mat. Iberoam., 21 (2005)
133–161.
[24] M. Herzog, P. Longobardi and M. Maj, Some results on products of finite subsets in groups, C. M. Campbell, M. R.
Quick, E. F. Robertson and C. M. Roney-Dougal, London Mathematical Society Lecture Note Series, 422 (2015),
Groups St. Andrews, Cambridge University Press, 2013 286–305.
[25] J. H. B. Kemperman, On complexes in a semigroup, Indag. Math., 18 (1956) 247–254.
[26] M. Kneser, Absch¨atzung der asymptotischen Dichte von Summenmengen, Math. Z., 58 (1953) 459–484.
[27] V. F. Lev and P. Y. Smeliansky, On addition of two distinct sets of integers, Acta Arith., 70 (1995) 85–91.
[28] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
[29] D. J. S. Robinson, A course in theory of groups, 2nd ed., Springer, 1996.
[30] I. Z. Ruzsa, An analog of Freiman’s theorem in groups, Ast´erisque, 258 (1999) 323–326.
[31] T. Sanders, The structure theory of set addition revisited, Bull. Amer. Math. Soc., 501 (2013) 93–127.
[32] Y. V. Stanchescu, On addition of two distinct sets of integers, Acta Arith., 75 (1996) 191–194.
[33] Y. V. Stanchescu, On the structure of sets with small doubling property on the plane. I, Acta Arith., 83 (1998)
127–141.
[34] Y. V. Stanchescu, The structure of d-dimensional sets with small sumset, J. Number Theory, 130 (2010) 289–303.
[35] T. Tao and Van H. Vu, Additive combinatorics, Cambridge studies in advanced mathematics, Cambridge University
Press, Cambridge, 105 2006.
[36] T. Tao, Product set estimates for non-commutative groups, Combinatorica, 28 (2008) 547–594.
Volume 9, Issue 2 - Serial Number 2
Proceedings of the Ischia Group Theory 2018- Part 2
June 2020
Pages 95-111
  • Receive Date: 15 January 2019
  • Revise Date: 27 January 2019
  • Accept Date: 01 February 2019
  • Published Online: 01 June 2020