[1] R. Baer, Situation der Untergruppen und Struktur der Gruppe, Sitzungsber. Heidelberger Akad. Wiss., 2 (1933)
12–17.
[2] Y. Berkovich, Groups of Prime Power Order, Volume 1 , de Gruyter, (2008).
[3] Y. Berkovich, Finite non-Dedekind p-groups all of whose non-normal cyclic subgroups of minimal order have index
p in their normalizers, Sci. China Ser. A, to appear.
[4] R. Dedekind, Ueber Gruppen, deren s¨ammtliche Theiler Normaltheiler sind, Math. Ann., 48 (1897) 548–561.
[5] M. De Falco, A note on groups with restrictions on centralizers of infinite index, Note Mat., 36 (2016) 1–13.
[6] M. De Falco, F. de Giovanni, C. Musella and N. Trabelsi, Groups with restrictions on infinite conjugacy classes,
Mediterr. J. Math., 14 (2017) 12 pp.
[7] G. A. Fern´andez-Alcober, L. Legarreta, A. Tortora and M. Tota, A restriction on centralizers in finite groups, J.
Algebra., 400 (2014) 33–42.
[8] G. A. Fern´andez-Alcober, L. Legarreta, A. Tortora and M. Tota, Some restrictions on normalizers or centralizers in
finite p-groups, Israel. Journal of Mathematics., 208 (2015) 193–217.
[9] G. A. Fern´andez-Alcober, L. Legarreta, A. Tortora and M. Tota, A finiteness condition on centralizers in locally
finite groups, Monatsh. Math., 183 (2017) 241–250.
[10] G. A. Fern´andez-Alcober, L. Legarreta, A. Tortora and M. Tota, A finiteness condition on centralizers in locally
nilpotent groups, Monatsh. Math., 182 (2017) 289–298.
[11] G. A. Fern´andez-Alcober, L. Legarreta, A. Tortora and M. Tota, Some finiteness conditions on normalizers or
centralizers in groups, Comm. Algebra, 46 (2018) 2003–2009.
[12] E. S. Golod, On nil-algebras and finitely approximable p-groups, Izv. Akad. Nauk SSSR Ser. Mat., 28 (1964) 273–276.
[13] R. I. Grigorchuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen., 14 (1980) 53-54.
[14] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., 8 75–263, Springer, New York,
1987.
[15] N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math. Z., 182 (1983) 385-388.
[16] B. Hartley and T. Meixner, Periodic groups in which the centralizer of an involution has bounded order, J. Algebra,
64 (1980) 285–291.
[17] E. I. Khukhro, Nilpotent Groups and Their Automorphisms, de Gruyter, Berlin-New York, 1993.
[18] M. Kuzucuo˘glu and P. Shumyatsky, On local finiteness of periodic residually finite groups, Proc. Edinb. Math. Soc.
(2), 45 (2002) 717–721.
[19] B. H. Neumann, Groups with finite classes of conjugate subgroups, Mathematische Zeitschrift., 63 (1955) 76–96.
[20] D. J. S. Robinson, A Course in the Theory of Groups, second edition, Springer-Verlag, New York, 1996.
[21] D. J. S. Robinson, On groups with extreme centralizers and normalizers, Adv. Group Theory Appl., 1 (2016) 97–112.
[22] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Camb. Phil. Soc., 60 (1964) 21–38.
[23] A. V. Rozhkov, Centralizers of elements in a group of tree automorphisms, Russian Acad. Sci. Izv. Math., 43 (1994)
471–492.
[24] A. Shalev, Profinite groups with restricted centralizers, Proc. Amer. Math. Soc., 122 (1994) 1279–1284.
[25] P. Shumyatsky, Centralizers in locally finite groups, Turkish J. Math., 31 (2007) 149-170.
[26] V. P. Shunkov, On periodic groups with an almost regular involution, Algebra and Logic, 11 (1972) 260–272.
[27] S. Sidki, On a 2-generated infinite 3-group: subgroups and automorphisms, J. Algebra, 110 (1987) 24–55.
[28] H. Zassenhaus, The Theory of Groups, second edition, Chelsea, New York, 1958.
[29] Q. Zhang and J. Gao, Normalizers of nonnormal subgroups of finite p-groups, J. Korean Math. Soc., 49 (2012)
201–221.
[30] X. Zhang and X. Guo, Finite p-groups whose non-normal cyclic subgroups have small index in their normalizers, J.
Group Theory, 15 (2012) 641–659.