Omegas of agemos in powerful groups

Document Type : Research Paper


Department of Mathematical Sciences, University of Bath, UK


In this note we show that for any powerful $p$-group $G$‎, ‎the subgroup‎ ‎$\Omega_{i}(G^{p^{j}})$ is powerfully nilpotent for all $i,j\geq1$‎ ‎when $p$ is an odd prime‎, ‎and $i\geq1$‎, ‎$j\geq2$ when $p=2$‎. ‎We‎ ‎provide an example to show why this modification is needed in the‎ ‎case $p=2$‎. ‎Furthermore we obtain a bound on the powerful nilpotency‎ ‎class of $\Omega_{i}(G^{p^{j}})$‎.


Main Subjects

[1] J. D. Dixon, M. P. F. Du Sautoy, A. Mann and D. Segal, Analytic Pro-P Groups, Cambridge Univ. Press, Cambridge,
[2] G. A. Fern´andez-Alcober, Omega subgroups of powerful p-groups, Israel J. Math., 162 (2007) 75–79.
[3] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.1, (2018).
[4] J. Gonz´alez-S´anchez and A. Jaikin-Zapirain, On the structure of normal subgroups of potent p-groups, J. Algebra,
276 (2004) 193–209.
[5] A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra, 105 (1987) 484–505.
[6] A. Mann, Some questions about p-groups, J. Aust. Math. Soc, 67 (1999) 356–379.
[7] A. Mann and F. Posnick-Fradkin, Subgroups of powerful groups, Israel J. Math., 138 (2003) 19–28.
[8] G. Traustason and J. Williams, Powerfully nilpotent groups, J. Algebra, 522 (2019) 80–100.