[1] A. A. Albert, Quasigroups I, Trans. Amer. Math. Soc., 54 (1943) 507–519.
[2] R. H. Bruck, Contributions to the Theory of Loops, Trans. Amer. Math. Soc., 60 (1946) 245–354.
[3] A. Figula, The multiplication groups of 2-dimensional topological loops, ´ J. Group Theory, 12 (2009) 419–429.
[4] A. Figula, Three-dimensional topological loops with solvable multiplication groups, ´ Comm. Algebra, 42 (2014) 444–
468.
[5] A. Figula and M. Lattuca, Three-dimensional topological loops with nilpotent multiplication groups, ´ J. Lie Theory,
25 (2015) 787–805.
[6] A. Figula, Quasi-simple Lie groups as multiplication groups of topological loops, ´ Adv. Geom., 15 (2015) 315–331.
[7] A. A. Figula, Al-Abayechi: Topological loops having solvable indecomposable Lie groups as their multiplication ´
groups, submitted to Transform. Groups, 2018.
[8] K. H. Hofmann and K. Strambach, Topological and analytical loops, In: Quasigroups and Loops: Theory and Applications (Eds. O. Chein, H. O. Pflugfelder and J. D. H. Smith), 205–262, Heldermann-Verlag, Berlin, 1990.
[9] G. M. Mubarakzyanov, Classification of Solvable Lie Algebras in dimension six with one non-nilpotent basis element,
Izv. Vyssh. Uchebn. Zaved. Mat., 4 (1963) 104–116.
[10] P. T. Nagy and K. Strambach, Loops in Group Theory and Lie Theory de Gruyter Expositions in Mathematics, 35,
Walter de Gruyter GmbH & Co. KG, Berlin, 2002.
[11] M. Niemenmaa and T. Kepka, On Multiplication Groups of Loops, J. Algebra, 135 (1990) 112–122.
[12] A. Shabanskaya and G. Thompson, Six-dimensional Lie algebras with a five-dimensional nilradical, J. of Lie Theory,
23 (2013) 313–355.
[13] A. Vesanen, Solvable loops and groups, J. Algebra, 180 (1996) 862–876.