The minimum sum of element orders of finite groups

Document Type : Research Paper

Authors

1 Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran

2 Department of Mathematics, Shabestar branch, Islamic Azad University, Shabestar, Iran

3 Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

‎Let $ G $ be a finite group and \( \psi(G)=\sum_{g\in G}o(g) \)‎, ‎where $ o(g) $ denotes the order of $g\in G$‎. ‎We show that the Conjecture 4.6.5 posed in [Group Theory and Computation‎, ‎(2018) 59-90]‎, ‎is incorrect‎. ‎In fact‎, ‎we find a pair of finite groups $G$ and $S$ of the same order such that $ \psi(G)<\psi(S)$‎, ‎with $G$ solvable and $S$ simple‎.

Keywords

Main Subjects


[1] H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs, Sums of element orders in finite groups, Comm. Algebra, 37 (2009)
2978–2980.
[2] H. Amiri and S. M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, Comm.
Algebra, 40 no. 2 (2012) 770–778.
[3] H. Amiri and S. M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl., 10
no. 2 (2011) 187–190.
[4] M. B. Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra,
516 (2018) 115–124.
[5] W. Bosma, J. J. Cannon, C. Fieker and A. Steel(Eds.), Handbook of Magma functions, 2, Berlin, 2010.
[6] S. M. Jafarian Amiri, Maximum sum of element orders of all proper subgroups of P GL(2, q), Bull. Iran. Math. Soc.,
39 no. 3 (2013) 501–505.
[7] S. M. Jafarian Amiri, Characterization of A5 and P SL(2, 7) by sum of element orders, Int. J. Group Theory, 2 no.
2 (2013) 35–39.
[8] S. M. Jafarian Amiri and M. Amiri, Characterization of p−groups by sum of the element orders, Publ. Math.
Debrecen, 86 no. 1-2 (2015) 31–37.
[9] S. M. Jafarian Amiri and M. Amiri. Sum of the element orders in groups of the square-free orders, Bull. Malays.
Math. Sci. Soc., 40 (2017) 1025–1034.
[10] G. James and M. Liebeck, Representation and characters of groups, Cambridge University Press, 2001.
[11] M. Herzog, P. Longobardi and M. Maj, Properties of finite and periodic groups determined by their element orders
(A Survey), Group Theory and Computation, Indian Stat. Inst. Ser., Springer, Singapore, (2018) 59–90.
[12] M. Herzog, P. Longobardi and M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups,
J. Pure Appl. Algebra, 222 no. 7 (2018) 1628–1642.
[13] M. Herzog, P. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J. Algebra, 511 (2018)
215–226.
[14] M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of order 2m with m odd, Comm. Algebra,
47 no. 5 (2019) 2035–2048.
[15] Y. Marefat, A. Iranmanesh and A. Tehranian, On the sum of element orders of finite simple groups, J. Algebra
Appl., 12 no. 7 (2013) pp. 4.
[16] M. Tuarnuauceanu and D. G. Fodor, On the sum of element orders of finite abelian groups, An. tiin. Univ. Al. I.
Cuza Iai. Mat. (N.S.), (2014) 1–7.