Engel groups in bath - ten years later

Document Type : Proceedings of the conference "Engel conditions in groups" - Bath - UK - 2019

Authors

1 Università della Campania "Luigi Vanvitelli" - Caserta - Italy

2 Università di Salerno - Fisciano - Italy

Abstract

The eighth edition of the international series of Groups St Andrews conferences was held at the University of Bath in 2009 and one of the theme days was dedicated to Engel groups. Since then much attention has been devoted to a verbal generalization of Engel groups. In this paper we will survey the development of this investigation during the last decade.

Keywords

Main Subjects


[1] A. Abdollahi and F. Russo, On a problem of P. Hall for Engel words, Arch. Math. (Basel), 97 no. 5 (2011) 407–412.
[2] C. Acciarri and P. Shumyatsky, On words that are concise in residually finite groups, J. Pure Appl. Algebra, 218
no. 1 (2014) 130–134.
[3] R. Bastos, N. Mansuro˘glu, A. Tortora and M. Tota, Bounded Engel elements in groups satisfying an identity, Arch.
Math. (Basel), 110 no. 4 (2018) 311–318.
[4] R. Bastos, P. Shumyatsky, A. Tortora and M. Tota, On groups admitting a word whose values are Engel, Internat.
J. Algebra Comput., 23 no. 1 (2013) 81–89.
[5] R. Botto Mura and A. H. Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics, Marcel
Dekker, Inc., New York - Basel, 1977.
[6] S. Brazil, A. Krasilnikov and P. Shumyatsky, Groups with bounded verbal conjugacy classes, J. Group Theory, 9
no. 1 (2006) 127–137.
[7] C. Delizia, P. Shumyatsky and A. Tortora, On semiconcise words, J. Group Theory, 23 (2020) 629–639.
[8] C. Delizia, P. Shumyatsky, A. Tortora and M. Tota, On conciseness of some commutator words, Arch. Math. (Basel),
112 no. 1 (2019) 27–32.
[9] E. Detomi, M. Morigi and P. Shumyatsky, On bounded conciseness of Engel-like words in residually finite groups,
J. Algebra, 521 (2019) 1–15.
[10] E. Detomi, M. Morigi and P. Shumyatsky, Words of Engel type are concise in residually finite groups, Bull. Math.
Sci., 9 no. 2 (2019) 19 pp.
[11] E. Detomi, M. Morigi and P. Shumyatsky, Words of Engel type are concise in residually finite groups, Part II, Group
Gem. Dyn, to appear.
[12] G. A. Fern´andez-Alcober and M. Morigi, Outer commutator words are uniformly concise, J. Lond. Math. Soc. (2),
82 no. 3 (2010) 581–595.
[13] G. A. Fern´andez-Alcober, M. Morigi and G. Traustason, A note on conciseness of Engel words, Comm. Algebra, 40
no. 7 (2012) 2570–2576.
[14] G. A. Fern´andez-Alcober and P. Shumyatsky, On bounded conciseness of words in residually finite groups, J. Algebra, 500 (2018) 19–29.
[15] R. Guralnick and P. Shumyatsky, On rational and concise words, J. Algebra, 429 (2015) 213–217.
[16] S. V. Ivanov, P. Hall’s conjecture on the finiteness of verbal subgroups, Soviet Math. (Iz. VUZ), 33 no. 6 (1989)
59–70.
[17] A. Jaikin-Zapirain, On the verbal width of finitely generated pro-p groups, Rev. Mat. Iberoam., 24 no. 2 (2008)
617–630.
[18] Y. Kim and A. H. Rhemtulla, On locally graded groups, Groups-Korea ’94 (Pusan), de Gruyter, Berlin, 1995 189–197.
[19] Y. Kim and A. H. Rhemtulla, Groups with ordered structures, Groups-Korea ’94 (Pusan), de Gruyter, Berlin, 1995
199–210.
[20] P. Longobardi and M. Maj, On some classes of orderable groups, Rend. Sem. Mat. Fis. Milano, 68 (1998) 203–216.
[21] P. Longobardi, M. Maj and H. Smith, A note on locally graded groups, Rend. Sem. Mat. Univ. Padova, 94 (1995)
275–277.
[22] O. Macedo`nska, On difficult problems and locally graded groups, J. Math. Sci. (N. Y.), 142 no. 2 (2007) 1949–1953.
[23] C. Mart´ınez and E. Zelmanov, On Lie rings of torsion groups, Bull. Math. Sci., 6 no. 3 (2016) 371–377.
[24] C. Monetta and A. Tortora, A nilpotency criterion for some verbal subgroups, Bull. Aust. Math. Soc., 100 no. 2
(2019) 281–289.
[25] A. Yu. Ol’shanski˘ı, Geometry of defining relations in groups, Kluwer Academic Publishers Group, Dordrecht, 1991.
[26] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-Verlag, New York, 1996.
[27] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Part 1 and Part 2, Springer-Verlag, New
York-Berlin, 1972.
[28] D. Segal, Words: notes on verbal width in groups, London Math. Soc. Lecture Note Ser., 361, Cambridge University
Press, Cambridge, 2009.
[29] P. Shumyatsky, Applications of Lie ring methods to group theory, Nonassociative algebra and its applications, Lecture Notes in Pure and Appl. Math., 211, Dekker, New York, 2000 373–395.
[30] P. Shumyatsky, On residually finite groups in which commutators are Engel, Comm. Algebra, 27 no. 4 (1999)
1937–1940.
[31] P. Shumyatsky, Verbal subgroups in residually finite groups, Q. J. Math., 51 (2000) 523–528.
[32] P. Shumyatsky, A. Tortora and M. Tota, An Engel condition for orderable groups, Bull. Braz. Math. Soc. (N.S.),
46 no. 3 (2015) 461–468.
[33] P. Shumyatsky, A. Tortora and M. Tota, Engel groups with an identity, Internat. J. Algebra Comput., 29 no. 1
(2019) 1–7.
[34] P. Shumyatsky, A. Tortora and M. Tota, On locally graded groups with a word whose values are Engel, Proc.
Edinburgh Math. Soc., 59 no. 2 (2016) 533–539.
[35] P. Shumyatsky, A. Tortora and M. Tota, On varieties of groups satisfying an Engel type identity, J. Algebra, 447
(2016) 479–489.
[36] G. Traustason, Engel groups, Groups St Andrews 2009 in Bath, 2, Cambridge Univ. Press, Cambridge, 2011 520–550.
[37] J. C. R. Wilson, On outer-commutator words, Canad. J. Math., 26 (1974) 608–620.
[38] J. S. Wilson, Two-generator conditions for residually finite groups, Bull. London Math. Soc., 23 no. 3 (1991) 239–248.
[39] E. I. Zelmanov, Lie algebras and torsion groups with identity, J. Comb. Algebra, 1 no. 3 (2017) 289–340.
[40] E. I. Zelmanov, Lie methods in the theory of nilpotent groups, Groups ’93 Galway/St Andrews, 2, Cambridge University Press, Cambridge, 1995 567–585.
[41] E. I. Zelmanov, Nil rings and periodic groups, KMS Lecture Notes Math., Korean Mathematical Society, Seoul, 1992.
[42] E. I. Zelmanov, On the restricted Burnside problem, Proceedings of the International Congress of Mathematicians,
I, II, (Kyoto, 1990), 395–402, Math. Soc. Japan, Tokyo, 1991.
[43] E. I. Zelmanov, Solution of the restricted Burnside problem for groups of odd exponent, Math. USSR-Izv., 36 (1991)
41–60.
[44] E. I. Zelmanov, Solution of the restricted Burnside problem for 2-groups, Math. USSR-Sb., 72 (1992) 543–565.
[45] E. I. Zelmanov, Some problems in the theory of groups and Lie algebras, Math. USSR-Sb., 66 no. 1 (1990) 159–168. 
Volume 9, Issue 4 - Serial Number 4
Proceedings of the conference "Engel conditions in groups"- Bath-UK-2019
December 2020
Pages 251-260
  • Receive Date: 22 November 2019
  • Revise Date: 26 January 2020
  • Accept Date: 27 January 2020
  • Published Online: 01 December 2020