[1] A. Abdollahi and F. Russo, On a problem of P. Hall for Engel words, Arch. Math. (Basel), 97 no. 5 (2011) 407–412.
[2] C. Acciarri and P. Shumyatsky, On words that are concise in residually finite groups, J. Pure Appl. Algebra, 218
no. 1 (2014) 130–134.
[3] R. Bastos, N. Mansuro˘glu, A. Tortora and M. Tota, Bounded Engel elements in groups satisfying an identity, Arch.
Math. (Basel), 110 no. 4 (2018) 311–318.
[4] R. Bastos, P. Shumyatsky, A. Tortora and M. Tota, On groups admitting a word whose values are Engel, Internat.
J. Algebra Comput., 23 no. 1 (2013) 81–89.
[5] R. Botto Mura and A. H. Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics, Marcel
Dekker, Inc., New York - Basel, 1977.
[6] S. Brazil, A. Krasilnikov and P. Shumyatsky, Groups with bounded verbal conjugacy classes, J. Group Theory, 9
no. 1 (2006) 127–137.
[7] C. Delizia, P. Shumyatsky and A. Tortora, On semiconcise words, J. Group Theory, 23 (2020) 629–639.
[8] C. Delizia, P. Shumyatsky, A. Tortora and M. Tota, On conciseness of some commutator words, Arch. Math. (Basel),
112 no. 1 (2019) 27–32.
[9] E. Detomi, M. Morigi and P. Shumyatsky, On bounded conciseness of Engel-like words in residually finite groups,
J. Algebra, 521 (2019) 1–15.
[10] E. Detomi, M. Morigi and P. Shumyatsky, Words of Engel type are concise in residually finite groups, Bull. Math.
Sci., 9 no. 2 (2019) 19 pp.
[11] E. Detomi, M. Morigi and P. Shumyatsky, Words of Engel type are concise in residually finite groups, Part II, Group
Gem. Dyn, to appear.
[12] G. A. Fern´andez-Alcober and M. Morigi, Outer commutator words are uniformly concise, J. Lond. Math. Soc. (2),
82 no. 3 (2010) 581–595.
[13] G. A. Fern´andez-Alcober, M. Morigi and G. Traustason, A note on conciseness of Engel words, Comm. Algebra, 40
no. 7 (2012) 2570–2576.
[14] G. A. Fern´andez-Alcober and P. Shumyatsky, On bounded conciseness of words in residually finite groups, J. Algebra, 500 (2018) 19–29.
[15] R. Guralnick and P. Shumyatsky, On rational and concise words, J. Algebra, 429 (2015) 213–217.
[16] S. V. Ivanov, P. Hall’s conjecture on the finiteness of verbal subgroups, Soviet Math. (Iz. VUZ), 33 no. 6 (1989)
59–70.
[17] A. Jaikin-Zapirain, On the verbal width of finitely generated pro-p groups, Rev. Mat. Iberoam., 24 no. 2 (2008)
617–630.
[18] Y. Kim and A. H. Rhemtulla, On locally graded groups, Groups-Korea ’94 (Pusan), de Gruyter, Berlin, 1995 189–197.
[19] Y. Kim and A. H. Rhemtulla, Groups with ordered structures, Groups-Korea ’94 (Pusan), de Gruyter, Berlin, 1995
199–210.
[20] P. Longobardi and M. Maj, On some classes of orderable groups, Rend. Sem. Mat. Fis. Milano, 68 (1998) 203–216.
[21] P. Longobardi, M. Maj and H. Smith, A note on locally graded groups, Rend. Sem. Mat. Univ. Padova, 94 (1995)
275–277.
[22] O. Macedo`nska, On difficult problems and locally graded groups, J. Math. Sci. (N. Y.), 142 no. 2 (2007) 1949–1953.
[23] C. Mart´ınez and E. Zelmanov, On Lie rings of torsion groups, Bull. Math. Sci., 6 no. 3 (2016) 371–377.
[24] C. Monetta and A. Tortora, A nilpotency criterion for some verbal subgroups, Bull. Aust. Math. Soc., 100 no. 2
(2019) 281–289.
[25] A. Yu. Ol’shanski˘ı, Geometry of defining relations in groups, Kluwer Academic Publishers Group, Dordrecht, 1991.
[26] D. J. S. Robinson, A course in the theory of groups, 2nd edition, Springer-Verlag, New York, 1996.
[27] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Part 1 and Part 2, Springer-Verlag, New
York-Berlin, 1972.
[28] D. Segal, Words: notes on verbal width in groups, London Math. Soc. Lecture Note Ser., 361, Cambridge University
Press, Cambridge, 2009.
[29] P. Shumyatsky, Applications of Lie ring methods to group theory, Nonassociative algebra and its applications, Lecture Notes in Pure and Appl. Math., 211, Dekker, New York, 2000 373–395.
[30] P. Shumyatsky, On residually finite groups in which commutators are Engel, Comm. Algebra, 27 no. 4 (1999)
1937–1940.
[31] P. Shumyatsky, Verbal subgroups in residually finite groups, Q. J. Math., 51 (2000) 523–528.
[32] P. Shumyatsky, A. Tortora and M. Tota, An Engel condition for orderable groups, Bull. Braz. Math. Soc. (N.S.),
46 no. 3 (2015) 461–468.
[33] P. Shumyatsky, A. Tortora and M. Tota, Engel groups with an identity, Internat. J. Algebra Comput., 29 no. 1
(2019) 1–7.
[34] P. Shumyatsky, A. Tortora and M. Tota, On locally graded groups with a word whose values are Engel, Proc.
Edinburgh Math. Soc., 59 no. 2 (2016) 533–539.
[35] P. Shumyatsky, A. Tortora and M. Tota, On varieties of groups satisfying an Engel type identity, J. Algebra, 447
(2016) 479–489.
[36] G. Traustason, Engel groups, Groups St Andrews 2009 in Bath, 2, Cambridge Univ. Press, Cambridge, 2011 520–550.
[37] J. C. R. Wilson, On outer-commutator words, Canad. J. Math., 26 (1974) 608–620.
[38] J. S. Wilson, Two-generator conditions for residually finite groups, Bull. London Math. Soc., 23 no. 3 (1991) 239–248.
[39] E. I. Zelmanov, Lie algebras and torsion groups with identity, J. Comb. Algebra, 1 no. 3 (2017) 289–340.
[40] E. I. Zelmanov, Lie methods in the theory of nilpotent groups, Groups ’93 Galway/St Andrews, 2, Cambridge University Press, Cambridge, 1995 567–585.
[41] E. I. Zelmanov, Nil rings and periodic groups, KMS Lecture Notes Math., Korean Mathematical Society, Seoul, 1992.
[42] E. I. Zelmanov, On the restricted Burnside problem, Proceedings of the International Congress of Mathematicians,
I, II, (Kyoto, 1990), 395–402, Math. Soc. Japan, Tokyo, 1991.
[43] E. I. Zelmanov, Solution of the restricted Burnside problem for groups of odd exponent, Math. USSR-Izv., 36 (1991)
41–60.
[44] E. I. Zelmanov, Solution of the restricted Burnside problem for 2-groups, Math. USSR-Sb., 72 (1992) 543–565.
[45] E. I. Zelmanov, Some problems in the theory of groups and Lie algebras, Math. USSR-Sb., 66 no. 1 (1990) 159–168.