# Groups with many roots

Document Type : Proceedings of the conference "Engel conditions in groups" - Bath - UK - 2019

Authors

1 Birbeck, University of London

2 Department of Economics, Mathematics and Statistics, Birkbeck, University of London

Abstract

Given a prime $p$‎, ‎a finite group $G$ and a non-identity element $g$‎, ‎what is the largest number of $p^{th}$ roots $g$ can have? We write $ϱ_p(G)$‎, ‎or just $ϱ_p$‎, ‎for the maximum value of $\frac{1}{|G|}|\{x \in G‎: ‎x^p=g\}|$‎, ‎where $g$ ranges over the non-identity elements of $G$‎. ‎This paper studies groups for which $ϱ_p$ is large‎. ‎If there is an element $g$ of $G$ with more $p^{th}$ roots than the identity‎, ‎then we show $ϱ_p(G) \leq ϱ_p(P)$‎, ‎where $P$ is any Sylow $p$-subgroup of $G$‎, ‎meaning that we can often reduce to the case where $G$ is a $p$-group‎. ‎We show that if $G$ is a regular $p$-group‎, ‎then $ϱ_p(G) \leq \frac{1}{p}$‎, ‎while if $G$ is a $p$-group of maximal class‎, ‎then $ϱ_p(G) \leq \frac{1}{p}‎ + ‎\frac{1}{p^2}$ (both these bounds are sharp)‎. ‎We classify the groups with high values of $ϱ_2$‎, ‎and give partial results on groups with high values of $ϱ_3$‎.

Keywords 20.1001.1.22517650.2020.9.4.4.2

Main Subjects

#### References

 Y. Berkovich, Groups of prime power order, Vol. 1, Walter de Gruyter, Berlin (2008).
 Y. Berkovich, On the number of solutions of the equation xpk= a in a finite p-group, Proc. American Math. Soc.,
116 (1992) 585–590.
 N. Blackburn, Note on a paper of Berkovich, J. Algebra, 24 (1973) 323–334.
 G. A. Fern´andez-Alcober, An introduction to finite p-groups: regular p-groups and groups of maximal class, Mat.
Contemp., 20 (2001) 155–226.
 The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.10.2; 2019. https://www.gap-system.
org.
 B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin,
(1967).
 T. J. Laffey, The Number of Solutions of xp = 1 in a Finite Group, Mathematical Proceedings of the Cambridge
Philosophical Society, 80 (1976) 229–31.
 T. J. Laffey, The Number of Solutions of x3 = 1 in a 3-group, Math. Zeitschrift., 149 (1976) 43–45.
 T. Y. Lam, On the number of solutions of xpk= a in a p-group, Illinois J. Math., 32 (1988) 575–583.
 W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language. Computational algebra
and number theory (London, 1993), J. Symbolic Comput., 24 (1997) 235–265.
 C. T. C. Wall, On groups consisting mostly of involutions, Proc. Camb. Phil. Soc., 67 (1970) 251–262.