[1] L. Bartholdi, Algorithmic decidability of Engel’s property for automaton groups, Computer Science–Theory and
Applications, Springer, (2016) 29–40.
[2] L. Bartholdi, Decidability problems in automaton semigroups, arXiv:1705.04598 [math.GR].
[3] W. Burnside, On an unsettled question in the theory of discontinous groups, Quart. J. Pure Appl. Math., 33 (1902)
230–238.
[4] E. S. Golod, Some problems of Burnside type, (Russian) 1968, Proc. Internat. Congr. Math., (Moscow) Izdat. “Mir”,
(1966) 284–289.
[5] R.I. Grigorchuk, On Burnside’s problem on periodic groups, Funktsional. Anal. i Prilozhen., 14 (1980) 53–54.
[6] R. I. Grigorchuk, Just infinite branch groups, Progr. Math., 184, Birkh¨auser Boston, Boston, MA, (2000) 121–179.
[7] N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math. Z., 182 (1983) 385–388.
[8] P. Longobardi, On locally graded groups with an Engel condition on infinite subsets, Arch. Math. (Basel), 76 (2001),
no. 2, 88-90.
[9] C. Monetta and A. Tortora, A nilpotency criterion for some verbal subgroups, Bull. Aust. Math. Soc., 100 (2019)
281–289.
[10] B. H. Neumann, A problem of Paul Erd˝os on groups, J. Austral. Math. Soc. Ser. A, 21 (1976), no. 4, 467-472.
[11] M. Soleimani Malekan, A. Abdollahi and M. Ebrahimi, Compact groups with many elements of bounded order, to
appear in J. Group Theory, https://doi.org/10.1515/jgth-2020-0045.
[12] L. S. Spiezia, A characterization of third Engel groups, Arch. Math. (Basel), 64 (1995), no. 5, 369-373.
[13] L. S. Spiezia, A property of the variety of 2-Engel groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), 225-228.