The automorphism groups of groups of order $p^{2} q$

Document Type : Research Paper

Authors

1 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Edificio U5, via Roberto Cozzi, 55, 20126 Milano, Italy

2 Dipartimento di Matematica, Università degli Studi di Trento, via Sommarive 14, I-38123 Trento, Italy

3 Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo, 5, 56127 Pisa, Italy

Abstract

‎We record for reference a detailed description of the automorphism groups of the groups of order $p^{2}q$‎, ‎where $p$ and $q$ are distinct primes‎.

Keywords

Main Subjects


[1] J. N. S. Bidwell, M. J. Curran and D. J. McCaughan, Automorphisms of direct products of finite groups, Arch.
Math. (Basel), 86 (2006) 481–489.
[2] E. Campedel, A. Caranti and I. Del Corso, Hopf-Galois structures on extensions of degree p2q and skew braces of order p2q: the cyclic Sylow p-subgroup case, J. Algebra, 556 (2020) 1165–1210.
[3] M. J. Curran, Automorphisms of semidirect products, Math. Proc. R. Ir. Acad., 108 (2008) 205–210.
[4] H. Dietrich and B. Eick, On the groups of cube-free order, J. Algebra, 292 (2005) 122–137.
[5] B. Eick, Enumeration of groups whose order factorises in at most 4 primes, arXiv e-prints, (2017) arXiv:1702.02616.
[6] B. Eick and T. Moede, The enumeration of groups of order pnq for n ≤ 5, J. Algebra, 507 (2018) 571–591.
[7] O. Hölder, Die Gruppen der Ordnungen p3, pq2, pqr, p4, Math. Ann., 43 (1893) 301–412.
[8] O. Hölder, Die Gruppen mit quadratfreier Ordnungszahl, Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, (1895) 211–229.
[9] R. Laue, Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen, Bayreuth. Math. Schr., 9 (1982) ii+304.
[10] S. Qiao and C. H. Li, The finite groups of cube-free order, J. Algebra, 334 (2011) 101–108.
[11] G. L. Walls, Automorphism groups, Amer. Math. Monthly, 93 (1986) 459–462.
[12] A. E. Western, Groups of order p3q, Proc. Lond. Math. Soc., 30 (1898/99) 209–263.