Boundedly finite conjugacy classes of tensors

Document Type : Research Paper


1 Departamento de Matemática, Universidade de Bras´ ılia, Brasilia-DF Brazil

2 Dipartimento di Matematica, Università di Salerno, Salerno, Italy


Let $n$ be a positive integer and let $G$ be a group‎. ‎We denote by $\nu(G)$ a certain extension of the non-abelian tensor square $G \otimes G$ by $G \times G$‎. ‎Set $T_{\otimes}(G) = \{g \otimes h \mid g,h \in G\}$‎. ‎We prove that if the size of the conjugacy class $\left |x^{\nu(G)} \right| \leq n$ for every $x \in T_{\otimes}(G)$‎, ‎then the second derived subgroup $\nu(G)''$ is finite with $n$-bounded order‎. ‎Moreover‎, ‎we obtain a sufficient condition for a group to be a BFC-group‎.


Main Subjects

[1] R. Bastos, I. N. Nakaoka and N. R. Rocco, Finiteness conditions for the non-abelian tensor product of groups,
Monatsh. Math., 187 (2018) 603–615.
[2] R. Bastos, I. N. Nakaoka and N. R. Rocco, The order of the non-abelian tensor product of groups, (2018), preprint
available at ArXiV:1812.04747.
[3] R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J.
Algebra, 111 (1987) 177–202.
[4] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (1987) 311–335.
[5] E. Detomi, M. Morigi and P. Shumyatsky, BFC-theorems for higher commutator subgroups, Q. J. Math., 70 (2019).
[6] G. Dierings and P. Shumyatsky, Groups with boundedly finite conjugacy classes of commutators, Q. J. Math., 69
(2018) 1047–1051.
[7] R. M. Guralnick and A. Maroti, Average dimension of fixed point spaces with applications, J. Algebra, 226 (2011)
[8] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954) 236–248.
[9] M. Parvizi and P. Niroomand, On the structure of groups whose exterior or tensor square is a p-group, J. Algebra,
352 (2012) 347–353.
[10] N. R. Rocco, On a construction related to the non-abelian tensor square of a group, Bol. Soc. Brasil Mat., 22 (1991)
[11] N. R. Rocco, A presentation for a crossed embedding of finite solvable groups, Comm. Algebra 22 (1994) 1975–1998.
[12] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 238 (1957) 389–401. 
Volume 10, Issue 4 - Serial Number 4
December 2021
Pages 187-195
  • Receive Date: 09 August 2020
  • Revise Date: 17 October 2020
  • Accept Date: 20 October 2020
  • Published Online: 01 December 2021