[1] R. Bastos, I. N. Nakaoka and N. R. Rocco, Finiteness conditions for the non-abelian tensor product of groups,
Monatsh. Math., 187 (2018) 603–615.
[2] R. Bastos, I. N. Nakaoka and N. R. Rocco, The order of the non-abelian tensor product of groups, (2018), preprint
available at ArXiV:1812.04747.
[3] R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J.
Algebra, 111 (1987) 177–202.
[4] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (1987) 311–335.
[5] E. Detomi, M. Morigi and P. Shumyatsky, BFC-theorems for higher commutator subgroups, Q. J. Math., 70 (2019).
849–858.
[6] G. Dierings and P. Shumyatsky, Groups with boundedly finite conjugacy classes of commutators, Q. J. Math., 69
(2018) 1047–1051.
[7] R. M. Guralnick and A. Maroti, Average dimension of fixed point spaces with applications, J. Algebra, 226 (2011)
298–308.
[8] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954) 236–248.
[9] M. Parvizi and P. Niroomand, On the structure of groups whose exterior or tensor square is a p-group, J. Algebra,
352 (2012) 347–353.
[10] N. R. Rocco, On a construction related to the non-abelian tensor square of a group, Bol. Soc. Brasil Mat., 22 (1991)
63–79.
[11] N. R. Rocco, A presentation for a crossed embedding of finite solvable groups, Comm. Algebra 22 (1994) 1975–1998.
[12] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 238 (1957) 389–401.