A subgroup $A$ of a group $G$ is called {\it seminormal} in $G$, if there exists a subgroup $B$ such that $G=AB$ and $AX$~is a subgroup of $G$ for every subgroup $X$ of $B$. The group $G = G_1 G_2 \cdots G_n$ with pairwise permutable subgroups $G_1,\ldots,G_n$ such that $G_i$ and $G_j$ are seminormal in~$G_iG_j$ for any $i, j\in \{1,\ldots,n\}$, $i\neq j$, is studied. In particular, we prove that if $G_i\in \frak F$ for all $i$, then $G^\frak F\leq (G^\prime)^\frak N$, where $\frak F$ is a saturated formation and $\frak U \subseteq \frak F$. Here $\frak N$ and $\frak U$~ are the formations of all nilpotent and supersoluble groups respectively, the $\mathfrak F$-residual $G^\frak F$ of $G$ is the intersection of all those normal subgroups $N$ of $G$ for which $G/N \in \mathfrak F$.
Trofimuk, A. (2022). A note on groups with a finite number of pairwise permutable seminormal subgroups. International Journal of Group Theory, 11(1), 1-6. doi: 10.22108/ijgt.2021.119299.1575
MLA
Alexander Trofimuk. "A note on groups with a finite number of pairwise permutable seminormal subgroups". International Journal of Group Theory, 11, 1, 2022, 1-6. doi: 10.22108/ijgt.2021.119299.1575
HARVARD
Trofimuk, A. (2022). 'A note on groups with a finite number of pairwise permutable seminormal subgroups', International Journal of Group Theory, 11(1), pp. 1-6. doi: 10.22108/ijgt.2021.119299.1575
VANCOUVER
Trofimuk, A. A note on groups with a finite number of pairwise permutable seminormal subgroups. International Journal of Group Theory, 2022; 11(1): 1-6. doi: 10.22108/ijgt.2021.119299.1575