On groups in which subnormal subgroups of infinite rank are commensurable‎ ‎with some normal subgroup

Document Type : Research Paper


Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy


We study soluble groups $G$ in which each subnormal subgroup $H$ with infinite rank is‎ ‎commensurable with a normal subgroup‎, ‎i.e‎. ‎there‎ ‎exists a normal subgroup $N$ such that $H\cap N$ has finite index‎ ‎in both $H$ and $N$‎. ‎We show that if such a $G$ is periodic‎, ‎then‎ ‎all subnormal subgroups are commensurable with a normal subgroup‎, ‎provided either the Hirsch-Plotkin radical of $G$ has infinite‎ ‎rank or $G$ is nilpotent-by-abelian (and has infinite rank)‎.


Main Subjects

[1] J. T. Buckley, J. C. Lennox, B. H. Neumann, H. Smith and J. Wiegold, Groups with all subgroups normal-by-finite,
J. Austral. Math. Soc. Ser. A, 59 (1995) 384–398.
[2] C. Casolo, Groups with finite conjugacy classes of subnormal subgroups, Rend. Sem. Mat. Univ. Padova, 81 (1989)
[3] C. Casolo, U. Dardano and S. Rinauro, Groups in which each subgroup is commensurable with a normal subgroup,
J. Algebra, 496 (2018) 48–60.
[4] U. Dardano and F. De Mari, Groups in which each subnormal subgroup is commensurable with some normal subgroup, J. Group Theory, https://doi.org/10.1515/jgth-2020-0076.

[5] U. Dardano and F. De Mari, On groups with all proper subgroups finite-by-abelian-by-finite, Arch. Math. (Basel),
[6] U. Dardano, F. De Mari and S. Rinauro, The weak minimal condition on subgroups which fail to be close to normal
subgroups, J. Algebra, 560 (2020) 371–382.
[7] U. Dardano, S. Rinauro, On soluble groups whose subnormal subgroups are inert, Int. J. Group Theory, 4 (2015)
[8] M. De Falco, F. de Giovanni, C. Musella, Y. P. Sysak, Groups of infinite rank in which normality is a transitive
relation, Glasg. Math. J., 56 (2014) 387–393.
[9] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, Groups of infinite rank with finite conjugacy classes of subnormal
subgroups, J. Algebra 431 (2015) 24–37.
[10] F. De Mari, Groups with many modular or self-normalizing subgroups, to appear on Comm. Algebra, https:
[11] S. Franciosi, F. de Giovanni, M. L. Newell, Groups whose subnormal subgroups are normal-by-finite, Comm. Algebra,
23 (1995) 5483–5497.
[12] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958) 787–801.
[13] B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955) 76–96.
[14] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 1964 21–38.
[15] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Ergebnisse der Mathematik und ihrer
Grenzgebiete, Springer-Verlag, New York-Berlin, 1972.
[16] D. J. S. Robinson, A Course in the Theory of Groups, Second edition. Graduate Texts in Mathematics, 80, Springer-
Verlag, New York, 1996.