Document Type : Research Paper

**Authors**

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy

**Abstract**

We study soluble groups $G$ in which each subnormal subgroup $H$ with infinite rank is commensurable with a normal subgroup, i.e. there exists a normal subgroup $N$ such that $H\cap N$ has finite index in both $H$ and $N$. We show that if such a $G$ is periodic, then all subnormal subgroups are commensurable with a normal subgroup, provided either the Hirsch-Plotkin radical of $G$ has infinite rank or $G$ is nilpotent-by-abelian (and has infinite rank).

**Keywords**

**Main Subjects**

[1] J. T. Buckley, J. C. Lennox, B. H. Neumann, H. Smith and J. Wiegold, Groups with all subgroups normal-by-finite,

J. Austral. Math. Soc. Ser. A, 59 (1995) 384–398.

J. Austral. Math. Soc. Ser. A, 59 (1995) 384–398.

[2] C. Casolo, Groups with finite conjugacy classes of subnormal subgroups, Rend. Sem. Mat. Univ. Padova, 81 (1989)

107–149.

107–149.

[3] C. Casolo, U. Dardano and S. Rinauro, Groups in which each subgroup is commensurable with a normal subgroup,

J. Algebra, 496 (2018) 48–60.

J. Algebra, 496 (2018) 48–60.

[4] U. Dardano and F. De Mari, Groups in which each subnormal subgroup is commensurable with some normal subgroup, J. Group Theory, https://doi.org/10.1515/jgth-2020-0076.

[5] U. Dardano and F. De Mari, On groups with all proper subgroups finite-by-abelian-by-finite, Arch. Math. (Basel),

https://doi.org/10.1007/s00013-021-01580-6.

[6] U. Dardano, F. De Mari and S. Rinauro, The weak minimal condition on subgroups which fail to be close to normal

subgroups, J. Algebra, 560 (2020) 371–382.

subgroups, J. Algebra, 560 (2020) 371–382.

[7] U. Dardano, S. Rinauro, On soluble groups whose subnormal subgroups are inert, Int. J. Group Theory, 4 (2015)

17–24.

17–24.

[8] M. De Falco, F. de Giovanni, C. Musella, Y. P. Sysak, Groups of infinite rank in which normality is a transitive

relation, Glasg. Math. J., 56 (2014) 387–393.

relation, Glasg. Math. J., 56 (2014) 387–393.

[9] M. De Falco, F. de Giovanni, C. Musella, N. Trabelsi, Groups of infinite rank with finite conjugacy classes of subnormal

subgroups, J. Algebra 431 (2015) 24–37.

subgroups, J. Algebra 431 (2015) 24–37.

[10] F. De Mari, Groups with many modular or self-normalizing subgroups, to appear on Comm. Algebra, https:

//doi.org/10.1080/00927872.2020.1870999.

//doi.org/10.1080/00927872.2020.1870999.

[11] S. Franciosi, F. de Giovanni, M. L. Newell, Groups whose subnormal subgroups are normal-by-finite, Comm. Algebra,

23 (1995) 5483–5497.

23 (1995) 5483–5497.

[12] P. Hall, Some suﬃcient conditions for a group to be nilpotent, Illinois J. Math., 2 (1958) 787–801.

[13] B. H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z., 63 (1955) 76–96.

[14] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 1964 21–38.

[15] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Ergebnisse der Mathematik und ihrer

Grenzgebiete, Springer-Verlag, New York-Berlin, 1972.

Grenzgebiete, Springer-Verlag, New York-Berlin, 1972.

[16] D. J. S. Robinson, A Course in the Theory of Groups, Second edition. Graduate Texts in Mathematics, 80, Springer-

Verlag, New York, 1996.

Verlag, New York, 1996.