A characterization of GVZ groups in terms of fully ramified characters

Document Type : Research Paper


Department of Mathematical Sciences, Kent State University Kent, Ohio 44242, U.S.A.


In this paper‎, ‎we obtain a characterization of GVZ-groups in terms of commutators and monolithic quotients‎. ‎This characterization is based on counting formulas due to Gallagher‎.


Main Subjects

[1] S. T. Burkett and M. L. Lewis, Characters with nontrivial center modulo their kernel, preprint.
[2] S. T. Burkett and M. L. Lewis, GVZ-groups, flat groups, and CM-groups, C. R. Math. Acad. Sci. Paris, 359 (2021)
[3] S. T. Burkett and M. L. Lewis, Partial GVZ-groups, J. Algebra, 581 (2021) 50–62.
[4] F. R. DeMeyer and G. J. Janusz, Finite groups with an irreducible representation of large degree, Math. Z., 108
(1969) 145–153.
[5] A. Espuelas, On certain groups of central type, Proc. Amer. Math. Soc., 97 (1986) 16–18.
[6] S. M. Gagola, Jr., Characters fully ramified over a normal subgroup, Pacific J. Math., 55 (1974) 107–126.
[7] R. B. Howlett and I. M. Isaacs, On groups of central type, Math. Z., 179 (1982) 555–569.
[8] I. M. Isaacs, Character theory of finite groups, Dover Publications, Inc., New York, 1994.
[9] I. M. Isaacs, Characters of solvable groups, American Mathematical Society, Providence, RI, 2018.
[10] M. L. Lewis, Groups where the centers of the irreducible characters form a chain, Monatsh. Math., 192 (2020) 371–399.
[11] M. Murai, Characterizations of p-nilpotent groups, Osaka J. Math., 31 (1994) 1–8.
[12] A. Nenciu, Isomorphic character tables of nested GVZ-groups, J. Algebra Appl., 11 (2012) 12 pp.
[13] A. Nenciu, Nested GVZ-groups, J. Group Theory, 19 (2016) 693–704.
[14] H. Tandra, and W. Moran, Flatness conditions on finite p-groups, Comm. Algebra, 32 (2004) 2215–2224.