Symmetric designs and projective special unitary groups $\text{PSU}_{5}(q)$

Document Type : Research Paper

Author

Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran

Abstract

In this article‎, ‎we prove that if a nontrivial symmetric $(v‎, ‎k‎, ‎\lambda)$ design admit a flag-transitive and point-primitive automorphism group $G$‎, ‎then the socle $X$ of $G$ cannot be a projective special unitary group of dimension five‎. ‎As a corollary‎, ‎we list all exist nineteen non-isomorphism such designs in which $\lambda\in\{1,2,3,4,6,12‎, ‎16‎, ‎18\}$ and $X=\text{PSU}_n(q)$ with $(n,q)\in\{(2,7),(2,9),(2,11),(3,3),(4,2)\}$‎.

Keywords

Main Subjects


[1] S. H. Alavi and M. Bayat, Flag-transitive point-primitive symmetric designs and three dimensional projective special
linear groups, Bull. Iranian Math. Soc., 42 (2016) 201–221.
[2] S. H. Alavi, M. Bayat and A. Daneshkhah, Symmetric designs admitting flag-transitive and point-primitive auto-
morphism groups associated to two dimensional projective special groups, Des. Codes Cryptogr., 79 (2016) 337–351.
[3] S. H. Alavi, M. Bayat and A. Daneshkhah, Finite exceptional groups of Lie type and symmetric designs, (Submitted),
2020.
[4] S. H. Alavi, M. Bayat, A. Daneshkhah and S. Zang Zarin , Symmetric designs and four dimensional projective
special unitary groups, Discrete Math., 342 (2019) 1159–1169.
[5] T. Beth, D. Jungnickel and H. Lenz, Design theory, I, Second edition, Encyclopedia of Mathematics and its Appli-
cations, 69, Cambridge University Press, Cambridge, 1999.
[6] S. Braić, A. Golemac, J. Mandić and T. Vučičić, Primitive symmetric designs with up to 2500 points, J. Combin.
Des., 19 (2011) 463–474.
[7] John N. Bray, Derek F. Holt and Colva M. Roney-Dougal, The maximal subgroups of the low-dimensional finite
classical groups, With a foreword by Martin Liebeck. London Mathematical Society Lecture Note Series, 407,
Cambridge University Press, Cambridge, 2013.
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of finite groups, Maximal
subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray, Oxford
University Press, Eynsham, 1985.
[9] A. Daneshkhah and S. Zang Zarin, Flag-transitive point-primitive symmetric designs and three dimensional projec-
tive special unitary groups, Bull. Korean Math. Soc., 54 (2017) 2029–2041.
[10] U. Dempwolff, Primitive rank 3 groups on symmetric designs, Des. Codes Cryptogr., 22 (2001) 191–207.
[11] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer-Verlag, New
York, 1996.
[12] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.0, 2020.
[13] D. R. Hughes and F. C. Piper, Design theory, Second edition. Cambridge University Press, Cambridge, 1988.
[14] Martin W. Liebeck, J. Saxl and Gary M. Seitz, On the overgroups of irreducible subgroups of the finite classical
groups, Proc. London Math. Soc. (3), 55 (1987) 507–537.
[15] E. O’Reilly-Regueiro, On primitivity and reduction for flag-transitive symmetric designs, J. Combin. Theory Ser.
A, 109 (2005) 135–148.
[16] E. O’Reilly-Regueiro, Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle,
J. Algebraic Combin., 26 (2007) 529–552.
[17] Cheryl E. Praeger, The flag-transitive symmetric designs with 45 points, blocks of size 12 and 3 blocks on every
point pair, Des. Codes Cryptogr., 44 (2007) 115–132.
[18] Cheryl E. Praeger and S. Zhou, Imprimitive flag-transitive symmetric designs, J. Combin. Theory Ser. A, 113
(2006) 1381–1395.
[19] J. Saxl, On finite linear spaces with almost simple flag-transitive automorphism groups, J. Combin. Theory Ser. A,
100 (2002) 322–348.
[20] Gary M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2), 97 (1973) 27–56.
[21] D. Tian and S. Zhou, Flag-transitive point-primitive symmetric (v, k, λ) designs with λ at most 100, J. Combin.
Des., 21 (2013) 127–141.
[22] S. Zhou, H. Dong and W. Fang, Finite classical groups and flag-transitive triplanes, Discrete Math., 309 (2009)
5183–5195.