[1] R. C. Alperin, PSL2 (Z) = Z2 ∗ Z3 , Amer. Math. Monthly, 100 (1993) 385–386.
[2] R. Baer, Die Kompositionsreihe der Gruppe aller eineindeutigen Abbildungen einer unendlichen Menge auf sich,
Stud. Math., 5 (1934) 15–17.
[3] R. W. Carter, Simple groups of Lie type, Wiley, New York, 1972.
[4] M. Costantini and G. Zacher, The finite simple groups have complemented subgroup lattices, Pacific J. Math., 213
(2004) 245–251.
[5] M. Ferrara and M. Trombetti, A local study of group classes, Note Mat., 42 (2020) 1–20.
[6] M. Ferrara and M. Trombetti, Infinite groups with many complemented subgroups, Beitr. Alg. Geom, to appear;
doi:10.1007/s13366-021-00597-w.
[7] J. Hall, Infinite alternating groups as finitary linear transformation groups, J. Algebra, 119 (1988) 337–359.
[8] B. Hartley and G. Shute, Monomorphisms and direct limits of finite groups of Lie type, Quart. J. Math. Oxford (2),
35 (1984) 49–71.
[9] O. H. Kegel and B. A. F. Wehrfritz, Locally finite groups, North-Holland, London, 1973.
[10] V. M. Levchuk and Ya. N. Nuzhin, Structure of Ree groups, Algebra and Logic, 24 (1985) 16–26.
[11] A. Yu. Ol’shanskij, Geometry of defining relations in groups, Kluwer Academy Publishers, Dordrecht, 1991.
[12] E. Previato, Some families of simple groups whose lattices are complemented, Boll. U. M. I., 6 (1982) 1003–1014.
[13] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Springer, Berlin, 1972.
[14] D. J. S. Robinson, A course in the theory of groups, Springer, Berlin, 1995.
[15] R. Schmidt, Subgroup lattices of groups, De Gruyter, Berlin, 1994.
[16] M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75 (1962) 105–145.
[17] H. N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc., 121 (1966) 62–89.
[18] B. A. F. Wehrfritz, Infinite linear groups, Springer, Berlin, 1973.