On products of conjugacy classes in general linear groups

Document Type : Research Paper

Author

Chebyshev Laboratory, St. Petersburg State University, Russia

Abstract

Let $K$ be a field and $n\geq 3$. Let $E_n(K)\leq H\leq GL_n(K)$ be an intermediate group and $C$ a noncentral $H$-class. Define $m(C)$ as the minimal positive integer $m$ such that $\exists i_1,\ldots,i_m\in\{\pm 1\}$ such that the product $C^{i_1}\cdots C^{i_m}$ contains all nontrivial elementary transvections. In this article we obtain a sharp upper bound for $m(C)$. Moreover, we determine $m(C)$ for any noncentral $H$-class $C$ under the assumption that $K$ is algebraically closed or $n=3$ or $n=\infty$.

Keywords

Main Subjects


[1] Z. Arad, J. Stavi and M. Herzog, Powers and products of conjugacy classes in groups, Products of conjugacy classes in groups, Lecture Notes in Math., 1112, Springer, 1985 6–51.
[2] H. Bass, K-theory and stable algebra, Inst. Hautes Etudes Sci. Publ. Math. ´ , 22 (1964) 5–60.
[3] A. Beltran, M.J. Felipe, C. Melchor, Some problems about products of conjugacy classes in finite groups, Int. J. Group Theory 9 (2020) 59–68.
[4] P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic abstract algebra, Basic abstract algebra, Second edition, Cambridge University Press, Cambridge, 1994.
[5] J. L. Brenner, The linear homogeneous group. III, Ann. of Math. (2), 71 (1960) 210–223.
[6] E. W. Ellers, N. Gordeev and M. Herzog, Covering numbers for Chevalley groups, Israel J. Math., 111 (1999) 339–372.
[7] I. Z. Golubchik, The full linear group over an associative ring, Uspehi Mat. Nauk, 28 (1973) 179–180.
[8] N. Gordeev, Products of conjugacy classes in algebraic groups I, II, J. Algebra, 173 (1995) 715–744, 745–779.
[9] R. Guralnick, G. Malle and P. Huu Tiep, Products of conjugacy classes in finite and algebraic simple groups, Adv.Math., 234 (2013) 618–652.
[10] F. Kn¨uppel and K. Nielsen, The extended covering number of SLn is n+ 1, Linear Algebra Appl., 418 (2006) 634–656.
[11] A. Lev, Products of cyclic conjugacy classes in the groups PSL, Linear Algebra Appl., 179 (1993) 59–83.
[12] A. Lev, Products of cyclic similarity classes in the group GLn(F), Linear Algebra Appl., 202 (1994) 235–266.
[13] A. Lev, The covering number of the group PSLn(F), J. Algebra, 182 (1996) 60–84.
[14] R. Preusser, Sandwich classification for GLn(R), O2n(R) and U2n(R, Λ) revisited, J. Group Theory, 21 (2018) 21–44.
[15] R. Preusser, Reverse decomposition of unipotents over noncommutative rings I: General linear groups, Linear Algebra Appl. 601 (2020) 285–300.
[16] D.M. Rodgers, J. Saxl, Products of conjugacy classes in the special linear groups, Comm. Algebra, 31 (2003) 4623–4638.
[17] L. N. Vaserstein, On the normal subgroups of GLn over a ring, Lecture Notes in Math., 854 (1981) 454–465.
[18] L. N. Vaserstein, Normal subgroups of the general linear groups over Banach algebras, J. Pure Appl. Algebra, 41 (1986) 99–112.
[19] L. N. Vaserstein, Normal subgroups of the general linear groups over von Neumann regular rings, Proc. Am. Math. Soc, 96 no. 2 (1986) 209–214.
[20] L. N. Vaserstein and E. Wheland, Products of conjugacy classes of two by two matrices, Linear Algebra Appl., 230 (1995) 165–188.
[21] J. S. Wilson, The normal and subnormal structure of general linear groups, Proc. Cambridge Philos. Soc., 71 (1972) 163–177.
Volume 11, Issue 4 - Serial Number 4
December 2022
Pages 229-252
  • Receive Date: 11 June 2020
  • Revise Date: 13 October 2021
  • Accept Date: 16 October 2021
  • Published Online: 01 December 2022