[1] M. Alaeiyan and M. Akbarizadeh, Classification of the pentavalent symmetric graphs of order 18p, Indian J. Pure Appl. Math., 50 no. 2 (2019) 485–497.
[2] M. Alaeiyan and M. Hosseinipoor, A classification of cubic edge-transitive graphs of order 18p, U. Politeh. Buch. Ser A, 77 no. 2 (2015) 219–226.
[3] M. Alaeiyan and M. Hosseinipoor, Cubic symmetric graphs of order 6p3 , Mat. Vesnik, 69 no. 2 ( 2017) 101–117.
[4] M. Alaeiyan, B. Onagh and M. Hosseinipoor, A classification of cubic symmetric graphs of order 16p2, Proc. Indian Acad. Sci. Math. Sci., 121 no. 3 (2011) 249–257.
[5] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput, 24 no. 3-4 (1997) 235–265.
[6] C.-y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc., 158 (1971) 247–256.
[7] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B, 42 no. 2 (1987) 196–211.
[8] J. H. Conway, R. T. Curtis and S. P. Norton, Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, 1985.
[9] S.-F. Du, D. Maruˇsiˇc and A. O. Waller, On 2−arc-transitive covers of complete graphs, J. Combin. Theory Ser. B, 74 no. 2 (1998) 276–290.
[10] Y. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p2, Sci. China Ser. A, 49 no. 3 (2006) 300–319.
[11] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc, 81 no. 2 (2006) 153–164.
[12] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B, 97 no. 4 (2007) 627–646.
[13] Y.-Q. Feng, J. H. Kwak and K. Wang, Classifying cubic symmetric graphs of order 8p or 8p2, European J. Combin, 26 no. 7 (2005) 1033–1052.
[14] D. Gorenstein, Finite simple groups: an introduction to their classification, Springer Science & Business Media, 2013.
[15] S.-T. Guo and Y.-Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math., 312 no. 15 (2012) 2214–2216.
[16] S.-t. Guo, H.-l. Hou and J.-t. Shi, Pentavalent symmetric graphs of order 16p, Acta Math. Appl. Sin. Engl. Ser, 33 no. 1 (2017) 115–124.
[17] S.-T. Guo, J.-X. Zhou and Y.-Q. Feng, Pentavalent symmetric graphs of order 12p, Electron. J. Combin., 18 no. 1 (2011) pp. 133.
[18] X. Hua and Y. Feng, Pentavalent symmetric graphs of order 8p, J. Beijing Jiaotong Univ., 35 (2011) 132–135.
[19] X.-H. Hua, Y.-Q. Feng, and J. Lee, Pentavalent symmetric graphs of order 2pq, Discrete Math., 311 no. 20 (2011) 2259–2267.
[20] B. Huppert and W. Lempken, Simple groups of order divisible by at most four primes, IEM, 2000.
[21] D. LE, Linear groups with an exposition of the galois field theory, 1958.
[22] B. Ling, Classifying pentavalent symmetric graphs of order 24p, Bull. Iranian Math. Soc., 43 no. 6 (2017) 1855–1866.
[23] P. Lorimer, Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory, 8 no. 1 (1984) 55–68.
[24] R. C. Miller, The trivalent symmetric graphs of girth at most six, J. Combin. Theory Ser. B, 10 no. 2 (1971) 163–182.
[25] J. Pan, B. Lou, and C. Liu, Arc-transitive pentavalent graphs of order 4pq, Electron. J. Combin., 20 no. 1 (2013) pp. 9.
[26] C. E. Praeger, R.-J. Wang, and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B, 58 no. 2 (1993) 299–318.
[27] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math., 68 no. 5 (1964) 426–438.
[28] W. Tutte, Connectivity in graphs, University of Toronto, 1966.
[29] R.-J. Wang and M.-Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B, 58 no. 2 (1993) 197–216.
[30] D.-W. Yang, R. Feng, and X.-H. Hua, On arc-transitive pentavalent graphs of order 2mpn, Appl. Math. Comput., 355 (2019) 269–281.
[31] D.-W. Yang, Y.-Q. Feng, and J.-L. Du, Pentavalent symmetric graphs of order 2pqr, Discrete Math., 339 no. 2 (2016) 522–532.