On infinite anticommutative groups

Document Type : Ischia Group Theory 2020/2021


1 Department of Mathematics, University of Salerno, Italy

2 Department of Mathematics - University of Salerno - Via Giovanni Paolo II, 132 - 84084 - Fisciano (SA) ITALY


We completely describe the structure of locally (soluble-by-finite) groups in which all abelian subgroups are locally cyclic‎. ‎Moreover‎, ‎we prove that Engel groups with the above property are locally nilpotent‎.


Main Subjects

[1] T. Banakh and V. Gavrylkiv, Algebra in the superextensions of twinic groups, Dissertationes Math., 243 (2010) 74 pp.
[2] C. Delizia and C. Nicotera, On infinite groups in which all abelian subgroups are locally cyclic, Monatsh. Math., (2021), https://doi.org/10.1007/s00605-021-01594-w.
[3] L. Fuchs, Infinite abelian groups, II, Academic Press, New York-London, 1973.
[4] E. S. Golod, Some problems of Burnside type, in Proc. Int. Congr. Math., Moscow, (1968) 284–298; Amer. Math. Soc. Transl. Ser. 2, 84 (1969) 83–88.
[5] M. F. Kuzennyi and S. V. Maznichenko, Structure of certain classes of groups with locally cyclic abelian subgroups, Ukrainian Math. J., 51 (1999) 1824–1838.
[6] B. I. Plotkin, Some criteria of locally nilpotent groups, Uspekhi Mat. Nauk, 9 (1954) 181–186 = Amer. Math. Soc., Translations 17 (1961) 1–7.
[7] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Part 2, Springer-Verlag, Berlin-Heidelberg, 1972.
[8] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1996.
[9] M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math., 77 (1955) 657–691.
[10] G. Traustason, Engel groups, Groups St. Andrews 2009 in Bath, 2, Cambridge University Press, 2011.
[11] H. Zassenhaus, Über endlische Fastkörper, Abh. Math. Sem. Univ. Hamburg, 11 (1935) 187–220.