New criteria for solvability, nilpotency and other properties of finite groups in terms of the order elements or subgroups

Document Type : Ischia Group Theory 2020/2021

Authors

Dipartimento di Matematica, Università di Salerno, via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy

Abstract

In this survey we shall describe some recent criteria for solvability, nilpotency and other properties of finite groups $G$, based either on the orders of the elements of $G$ or on the orders of the subgroups of $G$.

Keywords

Main Subjects


[1] H. Amiri, S. M. Jafarian Amiri and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra, 37 (2009) 2978–2980.
[2] A. Bahri, B. Khosravi and Z. Akhlaghi, A result on the sum of element orders of a finite groups, Arch. Math. (Basel), 114 (2020) 3–12.
[3] M. Baniasad Azad and B. Khosravi, A criterion for solvability of a finite group by the sum of element orders, J. Algebra, 516 (2018) 115–124.
[4] M. Baniasad Azad, B. Khosravi and M. Jafarpour, An answer to a conjecture on the sum of element orders, J. Algebra Appl., (2021), to appear.
[5] R. Bastos and C. Monetta, Coprime commutators in finite groups, Comm. Algebra, 47 (2019) 4137–4147.
[6] R. Bastos and P. Shumyatsky, A sufficient condition for nilpotency of the commutator subgroup, Sib. Math. J., 57 (2016) 762–763.
[7] R. Bastos, C. Monetta and P. Shumyatsky, A criterion for metanilpotency of a finite group, J. Group Theory, 21 (2018) 713–718.
[8] B. Baumslag and J. Wiegold, A sufficient condition for nilpotency in a finite group, arXiv:1411.2877v1.
[9] T. De Medts and M. Tărnăuceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008) 699–704.
[10] E. Fisman and Z. Arad, A proof of Szep’s conjecture, J. Algebra, 108 (1987) 340–354.
[11] M. Garonzi and I. Lima, On the Number of Cyclic Subgroups of a Finite Group, Bull. Braz. Math. Soc. New Series, 49 (2018) 515–530.
[12] M. Garonzi and M. Patassini, Inequalities detecting structural properties of a finite group, Comm. Algebra, 45 (2016) 677–687.
[13] M. Herzog, P. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J. Algebra, 511 (2018) 215–226.
[14] M. Herzog, P. Longobardi and M. Maj, An exact upper bound for sums of elements order in non-cyclic finite groups, J. Pure Appl. Algebra, 222 (2018) 1628–1642.
[15] M. Herzog, P. Longobardi and M. Maj, On a criterion for solvability of a finite groups, Comm. Algebra, 49 (2021) 2234–2240.
[16] M. Herzog, P. Longobardi and M. Maj, Another criterion for solvability of finite groups, J. Algebra, (2022), to appear, arXiv:2112.04220.
[17] M. Herzog, P. Longobardi and M. Maj, Sums of element orders in groups of order 2m with m odd, Comm. Algebra, 47 (2019) 2035–2048.
[18] A. Jaikin-Zapirain, On the number of conjugacy classes of finite nilpotent groups, Advances in Math., 227 (2011) 1129–1143.
[19] E.I. Khukhro, A. Moretó and M. Zarrin, The average element order and the number of conjugacy classes of finite groups, J. Algebra, 569 (2021) 1–11.
[20] M. Lazorec and M. Tărnăuceanu, A density result on the sum of element orders of a finite group, Arch. Math., 114 (2020) 601–607.
[21] C. Monetta and A. Tortora, A nilpotency criterion for some verbal subgroups, Bull. Aust. Math. Soc., 100 (2019) 281–289.
[22] W. R. Scott, Group Theory, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1964.
[23] M. Tărnăuceanu, On the solvability of a finite group by the sum of subgroup orders, Bull. Korean Math. Soc., 57 (2020) 1475–1479.
[24] M. Tărnăuceanu, Finite groups determined by an inequality of the orders of their subgroups II, Comm. Algebra, 45 (2017) 4865–4868.
[25] M. Tărnăuceanu, A criterion for nilpotency of a finite group by the sum of element orders, Comm. Algebra, 49 (2021) 1571–1577.
[26] M. Tărnăuceanu, A nilpotency criterion for finite groups, Acta Math. Hungar., 155 (2018) 499–501.
[27] M. Tărnăuceanu, Detecting structural properties of finite groups by the sum of element orders, Israel. J. Math., 238 (2020) 629–637.
[28] M. Tărnăuceanu, A result on the number of cyclic subgroups of a finite group, Proc. Japan Acad., Ser. A, 96 (2020) 93–94.
Volume 12, Issue 1 - Serial Number 1
Proceedings of the Ischia Group Theory (2020/2021) - Part 1
March 2023
Pages 35-44
  • Receive Date: 15 December 2021
  • Revise Date: 22 January 2022
  • Accept Date: 28 January 2022
  • Published Online: 01 March 2023