[1] M. Abou Hashish and L. Bénéteau, An alternative way to classify some generalized elliptic curves and their isotopic
loops, Comment. Math.Univ.Carolinae, 45 (2004) 237–255.
[2] L. Bénéteau and J. Lacaze, Symplectic trilinear form and related designs and quasigroups, Comm. Algebra, 16 (1988)
1035–1051.
[3] F. Buekenhout, Generalized elliptic cubic curves, Part 1, Finite Geometries, Dev. Math., 3, Kluwer Acad. Publ.,
Dordrecht, (2001) 35–48.
[4] O. Chein, H. O. Pflugfelder and J. D. H. Smith, Quasigroups and Loops, Theory and Applications, Sigma Series in
PureMathematics, 8 (1990).
[5] A. M. Cohen and A. G. Helminck, Trilinear alternating forms on a vector space of dimension 7, Comm. Algebra, 16
(1988) 1–25.
[6] D. Djokovic, Classification of trivectors of an eight dimensional real vector space, Linear Multilinear Algebr., 13 (1983)
3–39.
[7] G. B. Gurevitch, Foundations of the Theory of Algebraic Invariants, P. Noordhoff Ltd., Groningen, the Netherlands,
(1964).
[8] J. Hora and P. Pudlák, Classification of 8-dimensional trilinear alternating forms over GF(2), Comm. Algebra, 43
(2015) 3459–3471.
[9] N. Midoune and L. Noui, Trilinear alternating forms on a vector space of dimension 8 over a finite field, Linear
Multilinear Algebra, 61 (2013) 15–21.
[10] L. Noui, Transvecteur de rang 8 sur un corps algébriquement clos, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997)
611–614.