[1] A. Antony, G. Donadze, V. Prasad and V. Z. Thomas, The second stable homotopy group of the Eilenberg-Maclane
space, Math. Z., 287 (2017) 1327–1342.
[2] R. Bastos, E. de Melo, N. Goncalves and C. Monetta, The exponent of the non-abelian tensor square and related
constructions of p-groups, to appear on Math. Nachr.
[3] R. Bastos, E. de Melo, N. Goncalves and R. Nunes, Non-Abelian tensor square and related constructions of p-groups,
Arch. Math. (Basel), 114 (2020) 481–490.
[4] R. Bastos, R. de Oliveira, C. Monetta and N. Rocco, On some series of a group related to the non-abelian tensor
square of groups, J. Algebra, 598 (2022) 236–253.
[5] R. Bastos and C. Monetta, Boundedly finite conjugacy classes of tensors, Int. J. Group Theory, 10 (2021) no. 4
187–195.
[6] R. Bastos, I. N. Nakaoka and N. R. Rocco, Finiteness conditions for the non-abelian tensor product of groups,
Monatsh. Math., 187 (2018) 603–615.
[7] R. Bastos, I. N. Nakaoka and N. R. Rocco, Finiteness conditions for the box-tensor product of groups and related
constructions, J. Algebra, 587 (2021) 594–612.
[8] R. Bastos and N. R. Rocco, The non-abelian tensor square of residually finite groups, Monatsh. Math., 183 (2017)
61–69.
[9] R. Bastos and N. R. Rocco, Non-abelian tensor product of residually finite groups, São Paulo J. Math. Sci., 11
(2017) 361–369.
[10] R. Bastos, N. R. Rocco and E. R. Vieira, Finiteness of homotopy groups related to the non-abelian tensor product,
Ann. Mat. Pura Appl. (4), 198 (2019) 2081–2091.
[11] J. R. Beuerle and L.-C. Kappe,Infinite metacyclic groups and their non-abelian tensor squares, Proc. Edinburgh
Math. Soc. (2), 43 (2000) 651–662.
[12] R. D. Blyth, F. Fumagalli and M. Morigi, A survey of recent progress on non-abelian tensor squares of groups,
Ischia Group Theory 2010, Proceedings of the Conference, World Sci. Publ., Hackensack, NJ, (2012) 26–38.
[13] R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J.
Algebra, 111 (1987) 177–202.
[14] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology, 26 (1987) 311–335.
[15] T. P. Bueno and N. R. Rocco, On the q-tensor square of a group, J. Group Theory, 14 (2011) 785–805.
[16] R. K. Dennis, In search of new “homology” functors having a close relationship to K-theory, Preprint, Cornell
University, Ithaca, NY, 1976.
[17] E. Detomi, M. Morigi and P. Shumyatsky, BFC-theorems for higher commutator subgroups, Q. J. Math., 70 (2019)
849–858.
[18] G. Dierings and P. Shumyatsky, Groups with boundedly finite conjugacy classes of commutators, Q. J. Math., 69
(2018) 1047–1051.
[19] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p-groups, London Mathematical Society Lecture
Note Series, 157, Cambridge University Press, Cambridge, 1991.
[20] B. Eick and W. Nickel, Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group,
J. Algebra, 320 (2008) 927–944.
[21] G. Ellis, On the tensor square of a prime power group, Arch. Math. (Basel), 66 (1996) 467–469.
[22] G. Ellis, On the computation of certain homotopical-functors, LMS J. Comput. Math., 1 (1998) 25–41.
[23] G. Ellis and F. Leonard, Computing Schur multipliers and tensor products of finite groups, Proc. Roy. Irish Acad.
Sect. A, 95 (1995) 137–147.
[24] G. A. Fernández-Alcober, J. González-Sánches and A. Jaikin-Zapirain, Omega subgroups of pro-p groups, Israel J.
Math., 166 (2008) 393–412.
[25] R. M. Guralnick and A. Maroti, Average dimension of fixed point spaces with applications, Adv. Math., 226 (2011),
298–308.
[26] J. González-Sánches and A. Jaikin-Zapirain, On the structure of normal subgroups of potent p-groups, J. Algebra,
276 (2004) 193–209.
[27] L.-C. Kappe, Nonabelian tensor products of groups: the commutator connection, Proc. Groups St. Andrews 1997 at
Bath, London Math. Soc. Lecture Notes, 261 (1999) 447–454.
[28] A. Lubotzky and A. Mann, Powerful p-groups. I. Finite groups, J. Algebra, 105 (1987) 484–505.
[29] A. S.-T., Lue, The Ganea map for nilpotent groups, J. London Math. Soc. (2), 14 (1976) 309–312.
[30] C. Miller, The second homology group of a group: relations among commutators, Proc. Amer. Math. Soc., 3 (1952)
588–595.
[31] P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra, 212 (2008) 1840–1848.
[32] P. Moravec, Groups of prime power order and their nonabelian tensor squares, Israel J. Math., 174 (2009) 19–28.
[33] P. Moravec, On the exponent of Bogomolov multipliers, J. Group Theory, 22 (2019) 491–504.
[34] R. F. Morse, Advances in computing the nonabelian tensor square of polycyclic groups, Irish. Math. Soc. Bull., 56
(2005) 115–123.
[35] I. N. Nakaoka and N. R. Rocco, A survey of non-abelian tensor products of groups and related constructions, Bol.
Soc. Parana. Mat. (3), 30 (2012) 77–89.
[36] B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc., 29 (1954) 236–248.
[37] P. Niroomand and F. G. Russo, On the size of the third homotopy group of the suspension of an Eilenberg-MacLane
space, Turkish J. Math., 38 (2014) 664–671.
[38] M. Parvizi and P. Niroomand, On the structure of groups whose exterior or tensor square is a p-group, J. Algebra,
352 (2012) 347–353.
[39] N. R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil Mat., 22 (1991)
63–79.
[40] N. R. Rocco, A presentation for a crossed embedding of finite solvable groups, Comm. Algebra, 22 (1994) 1975–1998.
[41] N. Sambonet, The unitary cover of a finite group and the exponent of the Schur multiplier, J. Algebra, 426 (2015)
344–364.
[42] P. Shumyatsky, On residually finite groups in which commutators are Engel, Comm. Algebra, 27 (1999) 1937–1940.
[43] P. Shumyatsky, Applications of Lie ring methods to group theory, Nonassociative algebra and its applications (São
Paulo, 1998), Lecture Notes in Pure and Appl. Math., 211, Dekker, New York, 2000 373–395.
[44] P. Shumyatsky, Elements of prime power order in residually finite groups, Internat. J. Algebra Comput., 15 (2005)
571–576.
[45] S. N. Sidki, On weak permutability between groups, J. Algebra, 63 (1980) 186–225.
[46] V. Z. Thomas, On Schurs exponent property and its relation to Noether’s Rationality problem, Indian J. Pure Appl.
Math., 52 (2021) 729–734.
[47] J. Wiegold, Groups with boundedly finite classes of conjugate elements, Proc. Roy. Soc. London Ser. A, 238 (1957),
389–401.
[48] J. S. Wilson, Two-generator conditions for residually finite groups, Bull. London Math. Soc., 23 (1991), 239–248.
[49] E. I. Zel’manov, On the restricted Burnside problem, Proceedings of the International Congress of Mathematicians,
I, II, Math. Soc. Japan, Tokyo, 1991 395–402.
[50] E. Zel’manov, The solution of the restricted Burnside problem for groups of odd exponent, Math. USSR Izv., 36
(1991) 41–60.
[51] E. Zel’manov, The solution of the restricted Burnside problem for 2-groups, Math. Sb., 182 (1991) 568–592.