[1] W. Alexander and G. B. Briggs, On types of knotted curves, Ann. of Math. (2), 28 (1926/27) 562–586.
[2] V. G. Bardakov, P. Dey and M. Singh, Automorphism Groups of Quandles Arising from Groups, Monatsh. Math.,
184 (2017) 519–530.
[3] M. Bonatto and P. Vojtĕchovský, Simply connected latin quandles, J. Knot Theory Ramifications, 27 (2018) 32 pp.
[4] C. Burstin and W. Mayer, Distributive Gruppen von endlicher Ordnung, (German), J. Reine Angew. Math., 160
(1929) 111–130.
[5] V. D. Belousov, Fundamentals of the theory of quasiqroups and loops, Nauka, Moska, (1967) (Russian).
[6] R. H. Bruck, Some results in the theory of quasigroups, Trans. Amer. Math. Soc., 55 (1944) 19–52.
[7] R. H. Bruck, A survey of binary systems, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958 185 pp.
[8] J. Denes and A. D. Keedwell Latin Squares and their Applications, Academia Kiado, Budapest, 1974.
[9] N. N. Didurik and V. A. Shcherbacov, On definition of CI-quasigroup, ROMAI J., 13 (2017) 55–58.
[10] M. Elhamdadi, Distributivity in quandles and quasigroups, Algebra, Geometry and Mathematical Physics , Springer
Proceedings in Mathematics and Statistics, 85, Springer-Valag Heidelberg, 2014 325–340.
[11] M. Elhamdadi, J. MacQuarrie and R. Restrepo, Automorphism groups of quandles, J. Algebra Appl., 11 (2012) 9
pp.
[12] M. Elhamdadi and S. Nelson, Quandles-an introduction to the algebra of knots, Student Mathematical Library,
American Mathematical Society, Providence, 74 2015.
[13] V. M. Galkin, Left distributive finite order quasigroups, Quasigroups and loops. Mat. Issled., No. 51 (1979) 43–54.
[14] B. Ho and S. Nelson, Matrices and finite quandles, Homology Homotopy Apl., 7 (2005) 197–208.
[15] E. D. Huthnance Jr, A theory of generalised Moufang loops, Ph.D. thesis, Georgia Institute of Technology, (1968).
[16] Indu R. U. Churchill, M. Elhamdadi, M. Hajij and S. Nelson, Singular knots and involutive quandles, J. Knot
Theory Ramifications, 26 (2018) 1–10.
[17] A. O. Isere, J. O. Adeniran and T.G. Jaiyeola, Latin Quandles and Applications to Cryptography, Math. Appl., 10
(2021) 37–53.
[18] A. O. Isere, A quandle of order 2n and the concept of quandles isomorphism, J. Nigerian Math. Soc., 39 (2020)
155–166.
[19] A. O. Isere, J. O. Adeniran and A. R. T. Solarin, Some examples of finite Osborn loops, J. Nigerian Math. Soc., 31
(2012) 91–106.
[20] A. O. Isere, S. A. Akinleye and J. O. Adeniran, On Osborn loops of order 4N , Acta Univ. Apulensis Math. Inform.,
No. 37 (2014) 31–44.
[21] A. O. Isere, J. O. Adeniran and T.G. Jaiyeola, Generalized Osborn Loops of Order 4n, Acta Univ. Apulensis Math.
Inform., No. 43 (2015) 19–31.
[22] A. O. Isere, J. O. Adénı́ran and T. G. Jaiyéolá, Classification of Osborn loops of order 4n, Proyecciones, 38 (2019)
31–47.
[23] A. O. Isere, O. A. Elakhe and C. Ugbolo , A Higher Quandle of order 24, and its Inner Automorphisms, J. Physical
& Applied Sciences, 1 (2018) 100–110.
[24] A. O. Isere, J. O. Adeniran and T.G. Jaiyeola, Holomorphy of Osborn Loops, An. Univ. Vest Timiş. Ser. Mat.-
Inform., 53 (2015) 81–98.
[25] T G. Jaiyéo.lá and E. Effiong, Basarab loop and its variance with inverse properties, Quasigroups and Related
Systems, 26 (2018) 229–238.
[26] D. Joyce, A classifying invariant of knots, the Knot Quandle, J. Pure Appl. Algebra, 23 (1982) 37–66.
[27] D. Joyce, Simple Quandles, J. Algebra, 79 (1982) 307–318.
[28] S. Kamada, Knot invariants derived from quandles and racks, Invariants of knots and 3-manifolds, Geom. Topol.
Monogr., 4 (2001) 103–117.
[29] S. Kamada, H. Tamaru and K. Wada, On classification of quandles of cycle type, Tokyo. J. Math., 39 (2016)
157–171.
[30] A. Krapez, A Note On Belousov quasiqroups, Quasigroups Related Systems, 15 (2007) 291–294.
[31] A. D. Keedwell, Crossed-inverse quasigroups with long inverse cycles and applications to cryptography, Australas.
J. Combin., 20 (1999) 241–250.
[32] A. D. Keedwell and V. A. Shcherbacov, On m-inverse loops and quasigroups with a long inverse cycle, Australas.
J. Combin., 26 (2002) 99–119.
[33] A. D. Keedwell and V. A. Shcherbacov, Quasigroups with an inverse property and generalized parastrophic identities,
Quasigroups Related Systems, 13 (2005) 109–124.
[34] M. K. Kinyon and J. D. Phillips, Axioms for trimedial quasigroups, Comment. Math. Univ. Carolin., 45 (2004)
287–294.
[35] J. Macquarrie, Automorphism groups of quandles of orders 3, 4 and 5, Graduate Thesis and Dissertation, University
of South Florida available at https://scholarcommons.usf.edu/etd/3226 (2011).
[36] S. V. Matveev, Distributive groupoids in knot theory, (Russian), mat. sb. (N. S), 119 (1982) 78–88.
[37] K. McCrimmon, A taste of Jordan algebras, Universitext, Springer-Verlag, New York, 2004.
[38] G. Murillo, S. Nelson and A. Thompson, Matrices and finite Alexander quandles, J. Knot Theory Ramifications, 16
(2007) 769–778.
[39] F. Orrin, Symmetric and self-distributive systems, Amer. Math. Monthly, 62 (1955) 699–707.
[40] H. O. Pflugfelder, Quasigroups and loops: Introduction, Sigma series in Pure Math. 7, Heldermann Verlag, Berlin,
(1990) 147pp.
[41] V. A. Shcherbacov, Elements of quasigroup theory and some its applications in code theory and cryptology, 2003
pp. 85.
[42] D. A. Stanovský, A guide to self-distributive quasigroups or latin quandles, Quasigroups Related Systems, 23 (2015)
91–128.
[43] J. D. H. Smith, Finite distributive quasigroups, Math. Proc. Cambridge Philos. Soc., 80 (1976) 37–41.
[44] J. D. H. Smith, Lectures On quasigroup Representations, Quasigroups Related Systems, 15 (2007) 109–140.
[45] M. Takasaki, Abstractions of symmetric functions, Tohoku Math. J., 49 (1943) 143–207.
[46] Waterloo Maple Inc, Maple 18 (computer software), Ontario: Waterloo, (2014).