Computing Galois groups

Document Type : 2022 CCGTA IN SOUTH FLA

Author

Department of Mathematics, University of Würzburg, Würzburg, Germany

Abstract

The determination of a Galois group is an important question in computational algebraic number theory. One approach is based on the inspection of resolvents. This article reports on this method and on the performance of the current magma [W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997) 235--265]. implementation.

Keywords

Main Subjects


[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997) 235 – 265.
[2] A. Bostan, P. Flajolet, B. Salvy and E. Schost, Fast computation of special resultants, J. Symbolic Comput., 41 (2006) 1 – 29.
[3] J. Cannon and D. Holt, Computing maximal subgroups of finite groups, J. Symbolic Comput., 37 (2004) 589 – 609.
[4] H. Cohen, A course in computational algebraic number theory, Springer, Berlin 1993.
[5] H. Derksen and G. Kemper, Computational invariant theory, Encyclopaedia of Mathematical Sciences, 130, Springer, Berlin, 2002.
[6] J. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics, 163, Springer, New York, 1996.
[7] A.-S. Elsenhans, Invariants for the computation of intransitive and transitive Galois groups, J. Symbolic Comput., 47 (2012) 315 – 326.
[8] A.-S. Elsenhans, Improved methods for the construction of relative invariants for permutation groups, J. Symbolic Comput., 79 (2017) 211 – 231.
[9] A.-S. Elsenhans, A note on short cosets, Exp. Math., 23 (2014) 411 – 413.
[10] A.-S. Elsenhans and J. Klüners, Computing subfields of number fields and applications to Galois group computations, J. Symbolic Comput., 93 (2018) 1 – 20.
[11] C. Fieker and J. Klüners, Computation of Galois groups of rational polynomials, LMS J. Comput. Math., 17 (2014) 141 – 158.
[12] K. Geißler, Berechnung von Galoisgruppen über Zahl- und Funktionenkörpern, Dissertation, Berlin, 2003.
[13] W. Hart, M. van Hoeij and A. Novocin, Practical polynomial factoring in polynomial time, ISSAC 2011–Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, New York, 2011 163 – 170.
[14] M. van Hoeij, J. Klüners and A. Novocin, Generating subfields, J. Symbolic Comput., 52 (2013) 17–34.
[15] B. Huppert, Endliche Gruppen. I, Springer, Berlin 1967.
[16] J. Klüners, On computing subfields. A detailed description of the algorithm, J. Théor. Nombres Bor-deaux, 10 (1998) 243 – 271.
[17] J. Klüners and G. Malle, A database for field extensions of the rationals, LMS J. Comput. Math., 4 (2001) 182-196.
[18] R. Stauduhar, The determination of Galois groups, Math. Comp., 27 (1973) 981-996.
 
Volume 13, Issue 3 - Serial Number 3
2022 CCGTA IN SOUTH FLA
September 2024
Pages 241-250
  • Receive Date: 18 January 2023
  • Revise Date: 19 February 2023
  • Accept Date: 22 February 2023
  • Published Online: 01 September 2024