Supersoluble conditions and transfer control

Document Type : Ischia Group Theory 2012

Authors

1 Universita Bologna

2 Dipartimento di Matematica U. Dini Viale Morgagni 67/A 50134 FIRENZE

Abstract

‎In this paper we give a new condition for a Sylow $p$-subgroup of a finite group to control transfer‎. ‎Then it is deduced a characteri-zation of supersoluble groups that can be seen as a generalization of the well known result concerning the supersolubility of finite groups with cyclic Sylow subgroups‎. ‎Moreover a condition for a normal embedding of a strongly closed $p$-subgroup is given‎. ‎These results make use of the properties of $G$-chains and $\Phi$-chains‎.
 

Keywords

Main Subjects


M. Aschbacher (2011). The generalized Fitting subsystem of a fusion system. Mem. Amer. Math. Soc.. 209 (986), 0-110 H. G. Bray, W. E. Deskins, D. Johnson, J. F. Humphreys, B. M. Puttaswamaiah, P. Venzke and G. L. Walls (1982). Between Nilpotent and Solvable. Edited and with a preface by Michael Weinstein, Polygonal Publ. House, Washington, N. J.. P. Cs\"{o}rg\"{o} and M. Herzog (2004). On supersolvable groups and the nilpotator. Comm. Algebra. 32 (2), 609-620 K. Doerk and T. Hawkes (1992). Finite Soluble Groups. de Gruyter Expositions in Mathematics, {\bf 4}, Walter de Gruyter \& Co., Berlin. L. Dornhoff (1971). Group Representation Theory, Part A: Ordinary Representation Theory. Pure and Applied Mathematics, Marcel Dekker Inc., New York. 7 R. J. Flores and R. M. Foote (2009). Strongly closed subgroups of finite groups. Adv. Math.. 222 (2), 453-484 A. L. Gilotti and L. Serena (1980). On the existence of normal Sylow $p$-complement. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8). 69 (5), 228-231 A. L. Gilotti and L. Serena (1984). Sottogruppi massimali dei sottogruppi di Sylow e complementi normali. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8). 76 (3), 161-166 A. L. Gilotti and L. Serena (1985). Strongly closed subgroups and strong fusion. J. London Math. Soc. (2). 32 (1), 103-106 A. L. Gilotti and L. Serena (2011). Remarks on chains of weakly closed subgroups. J. Group Theory. 14 (6), 807-818 D. M. Goldschmidt (1975). Strongly closed $2$-subgroups of finite groups. Ann. of Math. (2). 102 (3), 475-489 D. Gorenstein (1968). Finite groups. Harper \& Row Publishers, New York. B. Huppert (1967). Endliche Gruppen I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin. 134 B. Huppert and N. Blackburn (1982). Finite Groups III. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin. 243 S. R. Li (1994). On minimal subgroups of finite groups. Comm. Algebra. 22 (6), 1913-1918 M. Suzuki (1986). Groups Theory II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York. 248
Volume 2, Issue 1 - Serial Number 1
Proceedings of the Ischia Group Theory 2012
March 2013
Pages 157-166
  • Receive Date: 27 June 2012
  • Revise Date: 21 February 2013
  • Accept Date: 14 March 2013
  • Published Online: 01 March 2013