Partially $S$-embedded minimal subgroups of finite groups

Document Type : Research Paper


1 School of Science, Shandong University of Technology

2 School of Sciences, Nantong University


Suppose that $H$ is a subgroup of $G$‎, ‎then $H$ is said to be‎ ‎$s$-permutable in $G$‎, ‎if $H$ permutes with every Sylow subgroup of‎ ‎$G$‎. ‎If $HP=PH$ hold for every Sylow subgroup $P$ of $G$ with $(|P|‎, ‎|H|)=1$)‎, ‎then $H$ is called an $s$-semipermutable subgroup of $G$‎. ‎In this paper‎, ‎we say that $H$ is partially $S$-embedded in $G$ if‎ ‎$G$ has a normal subgroup $T$ such that $HT$ is $s$-permutable in‎ ‎$G$ and $H\cap T\leq H_{\overline{s}G}$‎, ‎where $H_{\overline{s}G}$‎ ‎is generated by all $s$-semipermutable subgroups of $G$ contained in‎ ‎$H$‎. ‎We investigate the influence of some partially $S$-embedded‎ ‎minimal subgroups on the nilpotency and supersolubility of a finite‎ ‎group $G$‎. ‎A series of known results in the literature are unified‎ ‎and generalized.‎


Main Subjects

A. Ballester-Bolinches and M. C. Pedraza-Aguilera (1996). On minimal subgroups of finite group. Acta Math. Hungar.. 73, 335-342 A. Ballester-Bolinches and Y. M. Wang (2000). Finite groups with some $c$-normal minimal subgroups. J. Pure Appl. Algebra. 153, 121-127 Z. M. Chen (1987). On a theorem of Srinivasan. J. Southwest Normal Univ (Nat Sci). 12 (1), 1-1 J. B. Derr, W. E. Deskins and N. P. Mukherjee (1985). The influence of minimal $p$-subgroups on the structure of finite groups. Arch. Math. (Basel). 45, 1-4 W. E. Deskins (1963). On quasinormal subgroups of finite groups. Math. Z.. 82 (2), 125-132 K. Doerk and T. Hawkes (1992). Finite Soluble Groups. Walter de Gruyter, Berlin, New York. W. B. Guo (2000). The Theory of Classes of Groups. Science Press-Kluwer Academic Publishers, Beijing, New York, Dordrecht, Boston, London. W. B. Guo, K. P. Shum and A. N. Skiba (2009). On solubility and supersolubility of some classes of finite groups. Sci. China Ser. A. 52 (2), 272-286 W. B. Guo, K. P. Shum and F. Y. Xie (2011). Finite groups with some weakly $s$-supplemented subgroups. Glasg. Math. J.. 53, 211-222 W. B. Guo, Y. Lu and W. Niu (2010). $S$-embedded subgroups of finite groups. Algebra Logic. 49 (4), 293-304 B. Huppert (1967). Endliche Gruppen. I.. Springer-Verlag, Berlin, New York. B. Huppert and N. Blackburn (1982). Finite Groups III. Springer-Verlag, Berlin, New York. O. H. Kegel (1962). Sylow-Gruppen und Sbnormalteiler endlicher Gruppen. Math. Z.. 78, 205-221 Y. M. Li and Y. M. Wang (2004). On $\pi$-quasinormally embedded subgroups of finite group. J. Algebra. 281, 109-123 D. J. S. Robinson (1993). A Course in the Theory of Groups. Springer-Verlag, Berlin, New York. A. N. Skiba (2007). On weakly $s$-permutable subgroups of finite groups. J. Algebra. 315, 192-209 Y. M. Wang (1996). $C$-normality of groups and its properties. J. Algebra. 180, 954-965 Q. H. Zhang and L. F. Wang (2005). The influence of $s$-semipermutable properties of subgroups on the structure of finite groups. Acta Math. Sinica Acta Math. Sin.. 48 (1), 81-88
Volume 2, Issue 4 - Serial Number 4
December 2013
Pages 7-16
  • Receive Date: 13 February 2013
  • Revise Date: 21 March 2013
  • Accept Date: 21 March 2013
  • Published Online: 01 December 2013