[1] S. L. Aletheia-Zomlefer, L. Fukshansky and S. R. Garcia, The Bateman–Horn conjecture: heuristics, history, and applications, Expo. Math., 38 (2020) 430–479.
[2] C. Amarra, A. Devillers and C. E. Praeger, Delandsheer–Doyen parameters for block-transitive point-imprimitive block designs, Des. Codes Cryptogr., 90 (2022) 2205–2221.
[3] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp., 16 (1962) 220–228.
[4] V. Ia. Bouniakowsky, Sur les diviseurs numériques invariables des fonctions rationnelles entières, Mém. Acad. Sci. St. Péteresbourg, 6e série, VI (1857) 305–329.
[5] W. Burnside, Notes on the theory of groups of finite order. I: On the proof of Sylow’s Theorem. II. On the possibility of simple groups whose orders are the products of four primes, Proc. London Math. Soc., 25 (1894) 9–18. Also available at The Collected Papers of William Burnside, I 1883–1899, Oxford Univ. Press (2004) 401–410.
[6] W. Burnside, Notes on the theory of groups of finite order, Proc. London Math. Soc., 26 (1895) 191–214. Also available at The Collected Papers of William Burnside, I 1883–1899, Oxford Univ. Press (2004) 561–214.
[7] P. J. Cameron, P. Manna and R. Mehatari, On finite groups whose power graph is a cograph, J. Algebra, 591 (2022) 59–74.
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Clarendon Press, Oxford (1985).
[9] J. D. Dixon and A. E. Zalesskii, Finite primitive linear groups of prime degree, J. London Math. Soc. (2), 57 (1998) 126–134; corrigendum: ibid., 77 (2008) 808–812.
[10] J. D. Dixon and A. E. Zalesskii, Finite imprimitive linear groups of prime degree, J. Algebra, 276 (2004) 340–370.
[11] F. G. Frobenius, Über auflösbare Gruppen, Sitzb. Akad. Wiss. Berlin, (1893) 337–345. Also in F. G. Frobenius, Gesammelte Abhandlungen, II, Springer-Verlag, Berlin - Heidelberg - New York, (1968) 565–573.
[12] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math., 114 (1923) 215–273.
[13] O. Hölder, Die einfachen Gruppen im ersten und zweiten Hundert der Ordnungszahlen, Math. Ann., 40 (1892) 55–88.
[14] G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag (1998).
[15] G. A. Jones and A. K. Zvonkin, Klein’s ten planar dessins of degree 11, and beyond, Fundamental and Applied Math., to appear.
[16] G. A. Jones and A. K. Zvonkin, Groups of prime degree and the Bateman–Horn Conjecture, Expo. Msth., (2022) 1–19.
[17] G. A. Jones and A. K. Zvonkin, Block designs, permutation groups and prime values of polynomials, Tr. Inst. Mat. Mekh. UrO RAN, 29 (2023) 233–253.
[18] E. Khukhro and V. Mazurov (eds), Kourovka Notebook, https://arxiv.org/pdf/1401.0300.
[19] F. Klein, Über die Transformationen siebenter Ordnung der elliptischen Funktionen, Math. Ann., 14 (1878) 428–471.
[20] F. Klein, Über die Transformationen elfter Ordnung der elliptischen Funktionen, Math. Ann., 15 (1879) 533–555.
[21] A. S. Kondrat’ev, Finite almost simple 5-primary groups and their Gruenberg–Kegel graphs, Siberian Electronic Math. Reports, 11 (2014) 634–674.
[22] The Online Encyclopedia of Integer Sequences,
https://oeis.org.
[23] A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arith., 4 (1958) 185–298; erratum 5 (1958) 259.
[24] W. Shi, On the widths of finite groups (I), https://arxiv.math:2103.04572v2.
[25] R. Solomon, A brief history of the classification of the finite simple groups, Bull. Amer. Math. Soc. (N.S.), 38 (2001) 315–352.
[26] R. A. Wilson, Finite Simple Groups, Springer-Verlag (2009).