We discuss whether finiteness properties of a profinite group $G$ can be deduced from the coefficients of the probabilistic zeta function $P_G(s)$. In particular we prove that if $P_G(s)$ is rational and all but finitely many non abelian composition factors of $G$ are isomorphic to $PSL(2,p)$ for some prime $p$, then $G$ contains only finitely many maximal subgroups.
L. E. Dickson (1958). Linear groups: With an exposition of the Galois field
theory. Dover Publications Inc., New York. E. Detomi and A. Lucchini (2003). Crowns and factorization of the
probabilistic zeta function of a finite group. J. Algebra. 265 (2), 651-668 E. Detomi and A. Lucchini (2006). Crowns in profinite groups and applications. Noncommutative
algebra and geometry, Lect. Notes Pure Appl. Math., Chapman \&
Hall/CRC, Boca Raton, FL. 243, 47-62 E. Detomi and A. Lucchini (2006). Profinite groups with a rational probabilistic zeta function. J. Group Theory. 9 (2), 203-217 E. Detomi and A. Lucchini (2007). Non-prosoluble profinite groups with a rational probabilistic zeta
function. J. Group Theory. 10 (4), 453-466 D. H. Duong and A. Lucchini Rationality of the probabilistic zeta function of finitely generated
profinite groups. preprint. P.~J. Seral (2008). Coefficient of the probabilistic zeta function of a monolithic group. Glasgow J. Math.. 50, 75-81
Duong, H. D., & Lucchini, A. (2013). A finiteness condition on the coefficients of the probabilistic zeta function. International Journal of Group Theory, 2(1), 167-174. doi: 10.22108/ijgt.2013.2760
MLA
Hoang Dung Duong; Andrea Lucchini. "A finiteness condition on the coefficients of the probabilistic zeta function", International Journal of Group Theory, 2, 1, 2013, 167-174. doi: 10.22108/ijgt.2013.2760
HARVARD
Duong, H. D., Lucchini, A. (2013). 'A finiteness condition on the coefficients of the probabilistic zeta function', International Journal of Group Theory, 2(1), pp. 167-174. doi: 10.22108/ijgt.2013.2760
VANCOUVER
Duong, H. D., Lucchini, A. A finiteness condition on the coefficients of the probabilistic zeta function. International Journal of Group Theory, 2013; 2(1): 167-174. doi: 10.22108/ijgt.2013.2760