[1] Y. Akhtar, C. J. Colbourn and V. R. Syrotiuk, Mixed covering, locating, and detecting arrays via cyclotomy, Proceedings of the 52nd Southeastern Conference on Combinatorics, Graph Theory and Computing, to appear.
[2] N. Alon and J. H. Spencer, The probabilistic method, Third edition, With an appendix on the life and work of Paul Erdős. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2008.
[3] R. C. Bose and K. A. Bush, Orthogonal arrays of strength two and three, Ann. Math. Statistics, 23 (1952) 508–524.
[4] R. C. Bryce and C. J. Colbourn, The density algorithm for pairwise interaction testing, Softw. Test. Verifi-cation Reliab., 17 (2007) 159–182.
[5] R. C. Bryce and C. J. Colbourn, A density-based greedy algorithm for higher strength covering arrays, Softw. Test. Verification Reliab., 19 (2009) 37–53.
[6] K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Statistics, 23 (1952) 426–434.
[7] M. A. Chateauneuf, C. J. Colbourn and D. L. Kreher, Covering arrays of strength three, Des. Codes Cryptogr., 16 (1999) 235–242.
[8] M. A. Chateauneuf and D. L. Kreher, On the state of strength-three covering arrays, J. Combin. Des., 10 (2002) 217–238.
[9] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C. Patton, The AETG system: An approach to testing based on combinatorial design, IEEE Trans. Software Eng., 23 (1997) 437–444.
[10] C. J. Colbourn, Covering array tables:2 ≤ v ≤ 25, 2 ≤ t ≤ 6, t ≤ k ≤ 10000, 2005-23. https://www.public.asu.edu/ccolbou/src/tabby.
[11] C. J. Colbourn, Strength two covering arrays: existence tables and projection, Discrete Math., 308 (2008) 772–786.
[12] C. J. Colbourn, Covering arrays from cyclotomy, Des. Codes Cryptogr., 55 (2010) 201–219.
[13] C. J. Colbourn, Conditional expectation algorithms for covering arrays, J. Combin. Math. Combin. Comput., 90 (2014) 97–115.
[14] C. J. Colbourn and E. Lanus, Subspace restrictions and affine composition for covering perfect hash families, Art Discrete Appl. Math., 1 (2018) 19 pp.
[15] C. J. Colbourn, E. Lanus and K. Sarkar, Asymptotic and constructive methods for covering perfect hash families and covering arrays, Des. Codes Cryptogr., 86 (2018) 907–937.
[16] C. J. Colbourn and D. W. McClary, Locating and detecting arrays for interaction faults, J. Comb. Optim., 15 (2008) 17–48.
[17] C. J. Colbourn and V. R. Syrotiuk, On a combinatorial framework for fault characterization, Math. Comput. Sci., 12 (2018) 429–451.
[18] S. Das and T. Mészáros, Small arrays of maximum coverage, J. Combin. Des., 26 (2018) 487–504.
[19] D. Deng, D. R. Stinson and R. Wei, The Lovász local lemma and its applications to some combinatorial arrays, Des. Codes Cryptogr., 32 (2004) 121–134.
[20] M. S. Donders and A. P. Godbole, t-covering arrays generated by a tiling probability model, Congr. Numer., 218 (2013) 111–116.
[21] R. E. Dougherty, An asymptotically optimal bound for covering arrays of higher index, 2022. arXiv:2211.01209.
[22] R. E. Dougherty and C. J. Colbourn, Perfect hash families: the generalization to higher indices, Discrete mathematics and applications, Springer Optim. Appl., 165, Springer, Cham, 2020 177–197.
[23] R. E. Dougherty, K. Kleine, M. Wagner, C. J. Colbourn, and D. E. Simos, Algorithmic methods for covering arrays of higher index, J. Comb. Optim., 45 (2023) 21 pp.
[24] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), I, II, III, Colloq. Math. Soc. János Bolyai, 10, North-Holland, Amsterdam-London, 1975 609–627.
[25] N. Francetić and B. Stevens, Asymptotic size of covering arrays: an application of entropy compression, J. Combin. Des., 25 (2017) 243–257.
[26] L. Gargano, J. Körner and U. Vaccaro, Sperner capacities, Graphs Combin., 9 (1993) 31–46.
[27] A. P. Godbole, D. E. Skipper and R. A. Sunley, t-covering arrays: upper bounds and Poisson approximations, Combin. Probab. Comput., 5 (1996) 105–118.
[28] A. Hartman, Software and hardware testing using combinatorial covering suites, Graph theory, combinatorics and algorithms, Springer, New York, 2005 237–266.
[29] I. Izquierdo-Marquez, J. Torres-Jimenez, B. Acevedo-Juárez and H. Avila-George, A greedy-metaheuristic 3-stage approach to construct covering arrays, Inf. Sci., 460-461 (2018) 172–189.
[30] D. S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974) 256–278.
[31] D. R. Kuhn, R. Kacker and Y. Lei, Introduction to Combinatorial Testing, CRC Press, Boca Raton, FL, 2013.
[32] J. R. Lobb, C. J. Colbourn, P. Danziger, B. Stevens and J. Torres-Jimenez, Cover starters for covering arrays of strength two, Discrete Math., 312 (2012) 943–956.
[33] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Math., 13 (1975) 383–390.
[34] C. Martı́nez, L. Moura, D. Panario and B. Stevens, Locating errors using ELAs, covering arrays, and adaptive testing algorithms, SIAM J. Discrete Math., 23 (2009/10) 1776–1799.
[35] K. Meagher and B. Stevens, Group construction of covering arrays, J. Combin. Des., 13 (2005) 70–77.
[36] R. A. Moser and G. Tardos, A constructive proof of the general Lovász local lemma, J. ACM, 57 (2010) 15 pp.
[37] L. Moura, G. L. Mullen and D. Panario, Finite field constructions of combinatorial arrays, Des. Codes Cryptogr., 78 (2016) 197–219.
[38] L. Moura, S. Raaphorst and B. Stevens, Upper bounds on the sizes of variable strength covering arrays using the Lovász local lemma, Theoret. Comput. Sci., 800 (2019) 146–154.
[39] C. Nie and H. Leung, A survey of combinatorial testing, ACM Computing Surveys, 43 (2011) 1–29.
[40] D. Panario, M. Saaltink, B. Stevens and D. Wevrick, An extension of a construction of covering arrays, J. Combin. Des., 28 (2020) 842–861.
[41] S. Raaphorst, L. Moura and B. Stevens, A construction for strength-3 covering arrays from linear feedback shift register sequences, Des. Codes Cryptogr., 73 (2014) 949–968.
[42] K. Sarkar and C. J. Colbourn, Upper bounds on the size of covering arrays, SIAM J. Discrete Math., 31 (2017) 1277–1293.
[43] K. Sarkar and C. J. Colbourn, Two-stage algorithms for covering array construction, J. Combin. Des., 27 (2019) 475–505.
[44] K. Sarkar, C. J. Colbourn, A. De Bonis and U. Vaccaro, Partial covering arrays: algorithms and asymptotics, Theory Comput. Syst., 62 (2018) 1470–1489.
[45] G. B. Sherwood, S. S. Martirosyan and C. J. Colbourn, Covering arrays of higher strength from permutation vectors, J. Combin. Des., 14 (2006) 202–213.
[46] S. K. Stein, Two combinatorial covering theorems, J. Combinatorial Theory Ser. A, 16 (1974) 391–397.
[47] J. Torres-Jimenez and I. Izquierdo-Marquez, A simulated annealing algorithm to construct covering perfect hash families, Math. Probl. Eng., 2018 (2018) 14 pp.
[48] J. Torres-Jimenez and I. Izquierdo-Marquez, Improved covering arrays using covering perfect hash families with groups of restricted entries, Appl. Math. Comput., 369 (2020) 17 pp.
[49] G. Tzanakis, L. Moura, D. Panario and B. Stevens, Constructing new covering arrays from LFSR sequences over finite fields, Discrete Math., 339 (2016) 1158–1171.
[50] E. van den Berg, E. Candès, G. Chinn, C. Levin, P. D. Olcott and C. Sing-Long, Single-photon sampling architecture for solid-state imaging sensors, Proc. Natl. Acad. Sci. USA, 110 (2013) 2752–2761.
[51] M. Wagner, C. J. Colbourn and D. E. Simos, In-parameter-order strategies for covering perfect hash families, Appl. Math. Comput., 421 (2022) 21 pp.
[52] R. A. Walker II and C. J. Colbourn, Tabu search for covering arrays using permutation vectors, J. Statist. Plann. Inference. 139 (2009) 69–80.
[53] R. Yuan, Z. Koch and A. P. Godbole, Covering array bounds using analytical techniques, Congr. Numer., 222 (2014) 65–73.