Groups with the real chain condition on non-pronormal subgroups

Document Type : Ischia Group Theory 2022

Authors

1 Dipartimento di Matematica e Applicazioni “R.Caccioppoli”, Università di Napoli “Federico II”, Via Cintia - Monte S. Angelo, I-80126 Napoli, Italy

2 Università di Napoli “Federico II”, I-80126 Napoli, Italy

Abstract

It is shown that a generalised radical group has no chain of non-pronormal subgroups with the same order type as the set $\mathbb{R}$ of the real numbers if and only if either the group is minimax or all subgroups are pronormal.

Keywords

Main Subjects


[1] U. Dardano and F. De Mari, A real chain condition for groups, submitted. https://doi.org/10.48550/arXiv.2307.07639
[2] M. R. Dixon, Sylow theory, formations and Fitting classes in locally finite groups, Series in Algebra, 2, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. https://doi.org/10.1142/2386.
[3] M. R. Dixon, M. J. Evans and H. Smith, Locally soluble-by-finite groups with the weak minimal condition on non-nilpotent subgroups, J. Algebra, 249 (2002) 226–246.
[4] M. R. Dixon and I. Y. Subbotin, Groups with finiteness conditions on some subgroup system: a contemporary stage, Algebra Discrete Math., 4 (2009) 29–54.
[5] F. de Giovanni, L. A. Kurdachenko and A. Russo, Groups with pronormal deviation, J. Algebra, 613 (2023) 32–45.
[6] F. de Giovanni and G. Vincenzi, Some topics in the theory of pronormal subgroups of groups, Topics in infinite groups, Quad. Mat., 8, Dept. Math., Seconda Univ. Napoli, Caserta, 2001 175–202.
[7] F. de Giovanni and G. Vincenzi, Groups satisfying the minimal condition on non-pronormal subgroup, Boll. Un. Mat. Ital. A (7), 9 (1995) 185–194.
[8] F. de Giovanni and G. Vincenzi, Pronormality in infinite groups, Math. Proc. R. Ir. Acad., 100A (2000) 189–203.
[9] N. F. Kuzennyı̆ and I. Ya. Subbotin, Groups in which all subgroups are pronormal, Ukrainian Math. J., 39 (1987) 251–254.
[10] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Eiley and Sons, Chichester, 1988.
[11] T. A. Peng, Finite groups with pronormal subgroups, Proc. Amer. Math. Soc., 20 (1969) 232–234.
[12] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc., 60 (1964) 21–38.
[13] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Springer, Berlin-New York, 1972.
[14] D. J. S. Robinson, A course in the theory of groups, Springer, Berlin-New York, 1996.
[15] A. V. Tushev, On deviation in groups, Illinois J. Math., 47 (2003) 539–550.
[16] G. Vincenzi, Groups with dense pronormal subgroups, Ricerche Mat., 40 (1991) 75–79.
[17] G. Vincenzi, Groups satisfying the maximal condition on non-pronormal subgroups, Algebra Colloq., 5 (1998) 121–134.
[18] D. I. Zaicev, On the theory of minimax groups, Ukrainian Math. J., 23 (1971) 536–542.
Volume 14, Issue 1 - Serial Number 1
Proceedings of the Ischia Group Theory 2022-Part 2
March 2025
Pages 9-18
  • Receive Date: 19 July 2023
  • Revise Date: 14 October 2023
  • Accept Date: 21 October 2023
  • Published Online: 24 October 2023